초록
We study the class $C{\mathcal{V}} ({\Omega})$ of analytic functions f in the unit disk ${\mathbb{D}}=\{z{\in}{\mathbb{C}}$ : ${\mid}z{\mid}$ < 1} of the form $f(z)=z+{\sum}_{n=2}^{\infty}a_nz^n$ satisfying $$1+\frac{zf^{{\prime}{\prime}}(z)}{f^{\prime}(z)}{\in}{\Omega},\;z{\in}{\mathbb{D}}$$, where ${\Omega}$ is a convex and proper subdomain of $\mathbb{C}$ with $1{\in}{\Omega}$. Let ${\phi}_{\Omega}$ be the unique conformal mapping of $\mathbb{D}$ onto ${\Omega}$ with ${\phi}_{\Omega}(0)=1$ and ${\phi}^{\prime}_{\Omega}(0)$ > 0 and $$k_{\Omega}(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\exp}\({\displaystyle\smashmargin{2}{\int\nolimits_{0}}^t}{\zeta}^{-1}({\phi}_{\Omega}({\zeta})-1)d{\zeta}\)dt$$. Let $z_0,z_1{\in}{\mathbb{D}}$ with $z_0{\neq}z_1$. As the first result in this paper we show that the region of variability $\{{\log}\;f^{\prime}(z_1)-{\log}\;f^{\prime}(z_0)\;:\;f{\in}C{\mathcal{V}}({\Omega})\}$ coincides wth the set $\{{\log}\;k^{\prime}_{\Omega}(z_1z)-{\log}\;k^{\prime}_{\Omega}(z_0z)\;:\;{\mid}z{\mid}{\leq}1\}$. The second result deals with the case when ${\Omega}$ is the right half plane ${\mathbb{H}}=\{{\omega}{\in}{\mathbb{C}}$ : Re ${\omega}$ > 0}. In this case $CV({\Omega})$ is identical with the usual normalized class of convex univalent functions on $\mathbb{D}$. And we derive the sharp upper bound for ${\mid}{\log}\;f^{\prime}(z_1)-{\log}\;f^{\prime}(z_0){\mid}$, $f{\in}C{\mathcal{V}}(\mathbb{H})$. The third result concerns how far two functions in $C{\mathcal{V}}({\Omega})$ are from each other. Furthermore we determine all extremal functions explicitly.