References
- ABAQUS Analysis User‟s Manual (2008), Version 6.8.
- Abbas, H., Gupta, N.K. and Alam, M. (2004), "Nonlinear response of concrete beams and plates under impact loading", Int. J. Impact Eng., 30(8), 1039-1053. https://doi.org/10.1016/j.ijimpeng.2004.06.011
- Atou, T., Sano, Y., Katayama, M. and Hayashi, S. (2013), "Damage evaluation of reinforced concrete columns by hypervelocity impact", Procedia Eng., 58, 348-354. https://doi.org/10.1016/j.proeng.2013.05.039
- Chen, Y. and May, I.M. (2009), "Reinforced concrete members under drop-weight impact", Struct. Build., 162, 45-56. https://doi.org/10.1680/stbu.2009.162.1.45
- Cundall, P.A. (1971), "A computer model for simulating progressive large scale movement in blocky rock system". Symposium ISRM, Proc., 2, 129-136.
- Hanchak, S.J., Forrestal, M.J., Young, E.R. and Ehrgott, J.Q. (1992), "Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths", Int. J. Impact Eng., 12, 1-7. https://doi.org/10.1016/0734-743X(92)90282-X
- Hibbitt, H., Karlsson, B. and Sorensen P. (2011), "ABAQUS Analysis user‟s manual version 6.11", Dassault Systemes Simulia Corp., Providence, RI, USA.
- Husem, M. and Cosgun, S.I. (2016), "Behavior of reinforced concrete plates under impact loading: different support conditions and sizes", Comput. Concrete, 18(3), 389-404. https://doi.org/10.12989/cac.2016.18.3.389
- Institute of Turkish Standards (2000), "Requirements for design and construction of reinforced concrete structures", Turkish Standard Institute, 11-12.
- Lee, J. and Fenves, G. (1998), "Plastic-damage model for cyclic loading of concrete structure", J. Eng. Mech., 24(8), 892-900.
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
- Malm, R. (2009), "Predicting shear type cracks initiation and growth in concrete with nonlinear finite elements methods", Ph.D. Dissertation, Royal Institute of Technology, Stockholm, Sweden.
- Martin, O. (2010), "Comparison of different constitutive models for concrete in ABAQUS-explicit for missile impact analyses", JRF Scientific and Technical Report, European Commission Joint Research Centre Institute for Energy, Netherlands.
- Martin, S.W. (1994), "Modeling of local impact effects on plain and reinforced concrete", Int. Concrete Abs. Portal, 91(2), 178-187.
- Ong, K.C.G., Basheerkhan, M. and Paramasivam, P. (1999), "Resistance of fibre concrete slabs to low velocity projectile impact", Cement Concrete Compos., 21(5-6), 391-401. https://doi.org/10.1016/S0958-9465(99)00024-4
- Perumal, R. (2014), "Performance and modeling of highperformance steel fiber reinforced concrete underimpact loads", Comput. Concrete, 13(2), 255-270. https://doi.org/10.12989/cac.2014.13.2.255
- Pham, T.M. and Hao, H. (2016), "Review of concrete structures strengthened with FRP against impact loading", Struct., 7, 59-70. https://doi.org/10.1016/j.istruc.2016.05.003
- Saito, H., Imamura, A., Takeuchi, M., Okamoto, S., Kasai, Y., Tsubota, H. and Yoshimura, M. (1995), "Loading capacities and failure modes of various reinforced-concrete slabs subjected to high-speed loading", Nucl. Eng. Des., 156, 277-286. https://doi.org/10.1016/0029-5493(94)00953-V
- Sawamoto, Y., Tsubota, H., Kasai, Y. and Koshika, N. (1998), "Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method", Nucl. Eng. Des., 179(2), 157-177. https://doi.org/10.1016/S0029-5493(97)00268-9
- Tai, Y. and Tang, C. (2006), "Numerical simulation: The dynamic behavior of reinforced concrete plates under normal impact", Theo. Appl. Fract. Mech., 45, 117-127. https://doi.org/10.1016/j.tafmec.2006.02.007
- Thabet, A. and Haldane, D. (2000), "Three-dimensional simulation of nonlinear response of reinforced concrete members subjected to impact loading", ACI Struct. J., 97(5), 689-701.
- Trivedi, N. and Singh R.K. (2013), "Prediction of impact induced failure modes in reinforced concrete slabs through nonlinear transient dynamic finite element simulation", Ann. Nucl. Energy, 56, 109-121. https://doi.org/10.1016/j.anucene.2013.01.020
- Version, A. B. A. Q. U. S. (2016), Dassault Systemes Simulia.
- Wang, W., Zhang, D., Lu, F., Wang, S. and Tang, F. (2012) "Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading", Int. J. Impact Eng., 49, 158-164. https://doi.org/10.1016/j.ijimpeng.2012.03.010
- Wang, W., Zhang, D., Lu, F., Wang, S.C. and Tang, F. (2013), "Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion", Eng. Fail. Anal., 27, 41-51. https://doi.org/10.1016/j.engfailanal.2012.07.010
- Zhang, M.H., Shim, V.P.W., Lu, G. and Chew, C.W. (2005), "Resistance of high-strength concrete to projectile impact", Int. J. Impact Eng., 31(5), 825-841. https://doi.org/10.1016/j.ijimpeng.2004.04.009
- Zineddin, M. and Krauthammer, T. (2007), "Dynamic response and behavior of reinforced concrete slabs under impact loading", Int. J. Impact Eng., 34(9), 1517-1534. https://doi.org/10.1016/j.ijimpeng.2006.10.012
- Zmindak, M., Pelagic, Z., Pastorek, P. Mocilan, M. and Vybost'ok, M. (2016), "Finite element modelling of high velocity impact on plate structures", Procedia Eng., 136, 162-168. https://doi.org/10.1016/j.proeng.2016.01.191