참고문헌
- Angers, J. F. and Biswas, A. (2003). Bayesian analysis of zero-inflated generalized Poisson model, Computational Statistics and Data Analysis, 42, 37-46. https://doi.org/10.1016/S0167-9473(02)00154-8
- Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). Deviance information criterion for missing data models, Bayesian Analysis, 1, 651-674. https://doi.org/10.1214/06-BA122
- Cohen, A. C. (1963). Estimation in mixtures of discrete distributions. In Proceedings of the International Symposium on Discrete Distributions, Montreal, 373-378.
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis, CRC Press, New York.
- Ghosh, S. K., Mukhopadhyay, P., and Lu, J. C. (2006). Bayesian analysis of zero-inflated regression models, Journal of Statistical Planning and Inference, 136, 1360-1375. https://doi.org/10.1016/j.jspi.2004.10.008
- Greene, W. H. (1994). Accounting for excess zeros and sample selection in Poisson and negative binomial regression models, NYU Working Paper, No. EC-94-10.
- Haario, H., Saksman, E., and Tamminen, J. (2005). Componentwise adaptation for high dimensional MCMC, Computational Statistics, 20, 265-273. https://doi.org/10.1007/BF02789703
- Hall, D. B. (2000). Zero-inflated Poisson and binomial regression with random effects: a case study, Biometrics, 56, 1030-1039. https://doi.org/10.1111/j.0006-341X.2000.01030.x
- Jang, H., Kang, Y., Lee, S., and Kim, S. W. (2008). Bayesian analysis for the zero-inflated regression models, The Korean Journal of Applied Statistics, 21, 603-613. https://doi.org/10.5351/KJAS.2008.21.4.603
- Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 34, 1-14. https://doi.org/10.2307/1269547
- Lee, J., Choi, T., and Woo, Y. (2011a). Bayesian approaches to zero inflated Poisson model, The Korean Journal of Applied Statistics, 24, 677-693. https://doi.org/10.5351/KJAS.2011.24.4.677
- Lee, K., Joo, Y., Song, J. J., and Harper, D. W. (2011b). Analysis of zero-inflated clustered count data: a marginalized model approach, Computational Statistics and Data Analysis, 55, 824-837. https://doi.org/10.1016/j.csda.2010.07.005
- Li, C. S., Lu, J. C., Park, J., Kim, K., Brinkley, P. A., and Peterson, J. P. (1999). Multivariate zero-inflated Poisson models and their applications, Technometrics, 41, 29-38. https://doi.org/10.1080/00401706.1999.10485593
- Liu, H. and Powers, D. A. (2012). Bayesian inference for zero-inflated Poisson regression models, Journal of Statistics: Advances in Theory and Applications, 7, 155-188.
- Min, Y. and Agresti, A. (2005). Random effect models for repeated measures of zero-inflated count data, Statistical Modelling, 5, 1-19. https://doi.org/10.1191/1471082X05st084oa
- Neelon, B. H., O'Malley, A. J., and Normand, S. L. T. (2010). A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use, Statistical Modelling, 10, 421-439. https://doi.org/10.1177/1471082X0901000404
- Oh, M. S. and Lim, A. K. (2006). Bayesian analysis of a zero-inflated Poisson regression model: An application to Korean oral hygienic data, The Korean Journal of Applied Statistics, 19, 505-519. https://doi.org/10.5351/KJAS.2006.19.3.505
- Ridout, M., Hinde, J., and Demetrio, C. G. B. (2001). A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives, Biometrics, 57, 219-223. https://doi.org/10.1111/j.0006-341X.2001.00219.x
- Rodrigues, R. (2003). Bayesian analysis of zero-inflated distributions, Communications in Statistics, 32, 281-289. https://doi.org/10.1081/STA-120018186
- Shim, J., Lee, D. H., and Jung, B. C. (2011). Bayesian inference for the zero inflated negative binomial regression model, The Korean Journal of Applied Statistics, 24, 951-961. https://doi.org/10.5351/KJAS.2011.24.5.951
- Spiegelhalter, D. J., Best, N. G., Carline, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353
- Yau, K. K. W. and Lee, A. H. (2001). Zero-inflated Poisson regression with random effects to evaluate an occupational injury prevention program, Statistics in Medicine, 20, 2907-2920. https://doi.org/10.1002/sim.860