DOI QR코드

DOI QR Code

Model Predictive Power Control of a PWM Rectifier for Electromagnetic Transmitters

  • Zhang, Jialin (Faculty of Information, Beijing University of Technology) ;
  • Zhang, Yiming (Faculty of Information, Beijing University of Technology) ;
  • Guo, Bing (Faculty of Information, Beijing University of Technology) ;
  • Gao, Junxia (Faculty of Information, Beijing University of Technology)
  • Received : 2017.08.16
  • Accepted : 2018.02.03
  • Published : 2018.05.20

Abstract

Model predictive direct power control (MPDPC) is a widely recognized high-performance control strategy for a three-phase grid-connected pulse width modulation (PWM) rectifier. Unlike those of conventional grid-connected PWM rectifiers, the active and reactive powers of permanent magnet synchronous generator (PMSG)-connected PWM rectifiers, which are used in electromagnetic transmitters, cannot be calculated as the product of voltage and current because the back electromotive force (EMF) of the generator cannot be measured directly. In this study, the predictive power model of the rectifier is obtained by analyzing the relationship among flux, back EMF, active/reactive power, converter voltage, and stator current of the generator. The concept of duty cycle control in the proposed MPDPC is introduced by allocating a fraction of the control period for a nonzero vector and rest time for a zero vector. When nonzero vectors and their duration in the predefined cost function are simultaneously evaluated, the global power ripple minimization is obtained. Simulation and experimental results prove that the proposed MPDPC strategy with duty cycle control for the PMSG-connected PWM rectifier can achieve better control performance than the conventional MPDPC-SVM with grid-connected PWM rectifier.

Keywords

References

  1. Q. Y. Jiang, "Study on the key technology of wide field electromagnetic sounding instrument," Ph.D. Thesis, Central South University, Changsha, China, 2010.
  2. K. Xue, S. Wang, J. Lin, G. Li, and F. Zhou, “Loss analysis and air-cooled design for a cascaded electrical source transmitter,” J. Power Electron., Vol. 12, No. 5, pp. 530-543, Mar. 2015.
  3. F. Yu and Y. Zhang, “Modeling and control method for high-power electromagnetic transmitter power supplies,” J. Power Electron., Vol. 13, No. 4, pp. 679-691, Jul. 2013. https://doi.org/10.6113/JPE.2013.13.4.679
  4. Q. Zhen, Q. Di, and H. Liu, “Key technology study on CSAMT transmitter with excitation control,” Chinese J. Geophysics, Vol. 56, No. 11, pp. 3751-3760, Nov. 2013.
  5. X. Z. Zhu, "Based on the soft switch technology research and implementation of high-power electromagnetic transmitter," Master Thesis, Beijing University of Technology, Beijing, China, 2016.
  6. J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, J. Pontt, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 5-22, Feb. 2005. https://doi.org/10.1109/TIE.2004.841149
  7. B. Yin, R. Oruganti, S. K. Panda, and A. K. Bhat, “An output-power-control strategy for a three-phase PWM rectifier under unbalanced supply conditions,” IEEE Trans. Ind. Electron., Vol. 55, No. 5, pp. 2140-2151, May 2008. https://doi.org/10.1109/TIE.2008.918643
  8. X. H. Wu, S. K. Panda, and J. X. Xu, “DC link voltage and supply-side current harmonicsminimization of three phase PWM boostrectifiers using frequency domain based repetitive current controllers,” IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1987-1997, Jul. 2008. https://doi.org/10.1109/TPEL.2008.925428
  9. T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, "Direct power control of PWM converter without power-source voltage sensors," IEEE Trans. Ind. Appl., Vol. 34, No. 3, pp. 473-479, May/Jun. 1998. https://doi.org/10.1109/28.673716
  10. G. Escobar, A. M. Stankovic, J. M. Carrasco, E. Galvan, and R. Ortega, “Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 823-830, May 2003. https://doi.org/10.1109/TPEL.2003.810862
  11. M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. D. Marques, “Virtual-flux-based direct power control of three-phase PWM rectifiers,” IEEE Trans. Ind. Appl., Vol. 37, No. 4, pp. 1019-1027, Jul./Aug. 2001. https://doi.org/10.1109/28.936392
  12. Y. Zhang, Z Li, Y. Zhang, W. Xie, Z. Piao, and C. Hu, “Performance improvement of direct power control of PWM rectifier with simple calculation,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3428-3437, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2222050
  13. A. M. Razali, M. A. Rahman, G. George, and A. R. Nasrudin, “Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC-DC converter,” IEEE Trans. Ind. Appl., Vol. 51, No. 2, pp. 1189-1200, Mar./Apr. 2015. https://doi.org/10.1109/TIA.2014.2344503
  14. A. Bouafia, F. Krim, and J. P. Gaubert, “Fuzzy-logic-based switching state selection for direct power control of three-phase PWM rectifier,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1984-1992, Jun. 2009. https://doi.org/10.1109/TIE.2009.2014746
  15. J. A. Restrepo, J. M. Aller, J. C. Viola, A. Bueno, and T. G. Habetler, “Optimum space vector computation technique for direct power control,” IEEE Trans. Power Electron., Vol. 24, No. 6, pp. 1637-1645, Jun. 2009. https://doi.org/10.1109/TPEL.2009.2014953
  16. M. Malinowski, M. Jasinski, and M. P.Kazmierkowski, “Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM),” IEEE Trans. Ind. Electron., Vol. 51, No. 2, pp. 447-454, Apr. 2009.
  17. J. Restrepo, J. Viola, J. M. Aller, and A. Bueno, "A simple switch selection state for SVM direct power control," in Proc. ISIE, pp. 1112-1116, 2006.
  18. T. Geyer, G. Papafotiou, and M. Morari, “Model predictive direct torque control - Part I: Concept, algorithm, and analysis,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1894-1905, Jun. 2009. https://doi.org/10.1109/TIE.2008.2007030
  19. M. Preindl and S.Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 2: Field weakening operation,” IEEE Trans. Ind. Inform., Vol. 9, No. 2, pp. 648-657, May. 2013. https://doi.org/10.1109/TII.2012.2220353
  20. M. Pacas, J. Weber, “Predictive direct torque control for the PM synchronous machine,” IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1350-1356, Oct. 2005. https://doi.org/10.1109/TIE.2005.855662
  21. A. Bouafia, J. P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM),” IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 228-236, Jan. 2010. https://doi.org/10.1109/TPEL.2009.2028731
  22. P. Cortes, J. Rodriguez, P. Antoniewicz, and M. Kazmierkowski, “Direct power control of an AFE using predictive control,” IEEE Trans. Power Electron., Vol. 23, No. 5, pp. 2516-2523, Jan. 2008. https://doi.org/10.1109/TPEL.2008.2002065
  23. D. E. Quevedo, R. P. Aguilera, M. A. Perez, P. Cortes, and R. Lizana, “Model predictive control of an AFE rectifier with dynamic references,” IEEE Trans. Power Electron., Vol. 27, No. 7, pp. 3128-3136, Jul. 2012. https://doi.org/10.1109/TPEL.2011.2179672
  24. J. G. Norniella, J. M. Cano, G. A. Orcajo, C. H. R. Garcia, J. F. Pedrayes, M. F. Cabanas, and M. G. Melero, “Analytic and iterative algorithms for online estimation of coupling inductance in direct power control of three-phase active rectifiers,” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3298-3307, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2142196
  25. A. M. Razali, M. A. Rahman, G. George, and N. A. Rahim, "Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC-DC converter," IEEE Trans. Ind. Appl., Vol. 51, No. 2, pp. 1189-1200, Mar./Apr. 2015. https://doi.org/10.1109/TIA.2014.2344503
  26. Y. Cho and K. B. Lee, “Virtual-flux-based predictive direct power control of three-phase PWM rectifiers with fast dynamic response,” IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 3348-3359, Apr. 2016. https://doi.org/10.1109/TPEL.2015.2453129
  27. Y. Zhang, W. Xie, Z. Li, and Y. Zhang, “Model predictive direct power control of a PWM rectifier with duty cycle optimization,” IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5343-5351, Nov. 2013. https://doi.org/10.1109/TPEL.2013.2243846
  28. Y. Zhang, D. Xu, J. Liu, S. Gao, and W. Xue, “Performance improvement of model predictive current control of permanent magnet synchronous motor drives,” IEEE Trans. Ind. Appl., Vol. 53, No. 4, pp. 3683-3695, Jul./Aug. 2017. https://doi.org/10.1109/TIA.2017.2690998
  29. P. Antoniewicz and M. P. Kazmierkowski, "Virtual-flux-based predictive direct power control of AC/DC converters with online inductance estimation," IEEE Trans. Ind. Electron., Vol. 55, No. 12, pp. 4381-4390, Dec. 2008. https://doi.org/10.1109/TIE.2008.2007519
  30. D. Zhi, L. Xu, and B. W. Williams, “Improved direct power control of grid-connected DC/AC converters,” IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1280-1292, May 2009. https://doi.org/10.1109/TPEL.2009.2012497
  31. C. K. Lin, T. H. Liu, L. C. Fu, and C. F. Hsiao, "Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique," IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 667-681, Feb. 2014. https://doi.org/10.1109/TIE.2013.2253065
  32. W. Wang and X. Xi, "Current control method for PMSM with high dynamic performance," in Conf. IEMDC, pp. 1249-1254, 2013.
  33. M. H. Shin, D. S. Hyun, S. B. Cho, and S. Y. Choe, “An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors,” IEEE Trans. Power Electron., Vol. 15, No. 2, pp. 312-318, Mar. 2000. https://doi.org/10.1109/63.838104
  34. M. Hinkkanen and J. Luomi, “Modified integrator for voltage model flux estimation of induction motors,” IEEE Trans. Ind. Electron., Vol. 50, No. 4, pp. 818-820, Aug. 2003. https://doi.org/10.1109/TIE.2003.814996
  35. P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1323-1325, Feb. 2012. https://doi.org/10.1109/TIE.2011.2157284
  36. J. Yang, H. Cui, S. Li, and A. Zolotas, “Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 65, No. 2, pp. 832-841, Feb. 2018. https://doi.org/10.1109/TCSI.2017.2725386
  37. J. Yang, W. Zheng, S. Li, B. Wu, and M. Cheng, “Design of a prediction-accuracy-enhanced continuous-time MPC for distuibed systems via a disturbance observer,” IEEE Trans. Ind. Electron., Vol. 62, No. 9, pp. 5807-5816, Sep. 2015. https://doi.org/10.1109/TIE.2015.2450736