References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- M. Arunkumar, A. Bodaghi, J. M. Rassias, and E. Sathiya, The general solution and approximations of a decic type functional equation in various normed spaces, J. Chungcheong Math. Soc. 29 (2016), 287-328. https://doi.org/10.14403/jcms.2016.29.2.287
- A. Bodaghi, Stability of a mixed type additive and quartic function equation, Filomat, 28 (2014), no. 8, 1629-1640. https://doi.org/10.2298/FIL1408629B
- A. Bodaghi, Stability of a quartic functional equation, Scientific World Journal, 2014, Article ID 752146, 9pages.
- A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst. 30 (2016), 2309-2317. https://doi.org/10.3233/IFS-152001
- A. Bodaghi, Approximate mixed type additive and quartic functional equation, Bol. Soc. Paran. Mat. 35 (2017), 43-56. https://doi.org/10.5269/bspm.v35i1.29014
- A. Bodaghi, D. Kang, and J. M. Rassias, The mixed cubic-quartic functional equation, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), LXIII (2017), 215-227.
- A. Bodaghi and S. O. Kim, Ulam's type stability of a functional equation deriving from quadratic and additive functions, J. Math. Ineq. 9 (2015), 73-84.
- A. Bodaghi, S. M. Moosavi, and H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan ∗-derivations, Ann. Univ. Ferrara, 59 (2013), 235-50. https://doi.org/10.1007/s11565-013-0185-9
- A. Bodaghi and P. Narasimman, Stability of the general form of quadratic-quartic functional equations in non-Archimedean L-fuzzy normed spaces, Tbilisi Math. J. 11 (2018), no. 1, 15-29.
- A. Bodaghi, C. Park, and J. M. Rassias, Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc. 31 (2016), 729-743. https://doi.org/10.4134/CKMS.c150147
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- H. G. Dales and M. Sal Moslehian, Stability of mappings on multi-normed spaces, Glas. Math. J. 49 (2007), 321-332. https://doi.org/10.1017/S0017089507003552
- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- Z. Gajda, On stability of additive mappings, Int. J. Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
- P. Gavruta,A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- M. E. Gordji, tability of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc. 47 (2010), 491-502. https://doi.org/10.4134/BKMS.2010.47.3.491
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Russias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878. https://doi.org/10.1016/S0022-247X(02)00415-8
- D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
- P. Narasimman and A. Bodaghi, Solution and stability of a mixed type functional equation, Filomat, 31 (2017), 1229-1239. https://doi.org/10.2298/FIL1705229N
- J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III, 34 (1999) 243-252.
- J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glas. Mat. Ser. III, 36 (2001), no. 56, 63-72.
- J. M. Rassias, M. Arunkumar, E. Sathya, and T. Namachivayam, Various generalized Ulam-Hyers Stabilities of a nonic functional equations, Tbilisi Math. J. 9 (2016), 159-196.
-
J. M. Rassias and M. Eslamian, Fixed points and stability of nonic functional equation in quasi-
${\beta}$ -normed spaces, Cont. Anal. Appl. Math. 3 (2015), 293-309. - Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- K. Ravi, J. M. Rassias, and B. V. Senthil Kumar, Ulam-Hyers stability of undecic functional equation in quasi-beta normed spaces fixed point method, Tbilisi Math. Sci. 9 (2016), 83-103.
- K. Ravi, J. M. Rassias, S. Pinelas, and S. Suresh, General solution and stability of quattuordecic functional equation in quasi beta-normed spaces, Adv. Pure Math. 6 (2016), 921-941. https://doi.org/10.4236/apm.2016.612070
- F. Skof, Propriet localie approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
- M. Turinici, Sequentially iterative processes and applications to Volterra func- tional equations, Annales Univ. Mariae-Curie Sklodowska, (Sect A), 32 (1978), 127-134.
- S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960.
-
T. Z. Xu and J. M. Rassias, Approximate septic and octic mappings in quasi-
${\beta}$ - normed spaces, J. Comput. Anal. Appl. 15 (2013), no. 6, 1110-1119. - T. Z. Xu, J. M. Rassias, and W. X. Xu, A generalized mixed quadratic-quartic functional equation, Bulletin Malay. Math. Sci. Soc. 35 (2012), 633-649.
-
T. Z. Xu, J. M. Rassias, M. J. Rassias, and W. X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-
${\beta}$ -normed spaces, J. Inequal. Appl. 2010, Article ID 423231, 23pages, doi:10.1155/2010/423231.