Acknowledgement
Supported by : National Science Foundation of China, Central Universities of China
References
- Alduse, B.P., Jung, S., Vanli, O.A. and Kwon, S.D. (2015), "Effect of uncertainties in wind speed and direction on the fatigue damage of long-span bridges", Eng. Struct., 100, 468-478. https://doi.org/10.1016/j.engstruct.2015.06.031
- Andrieu, C., De Freitas, N., Doucet, A. and Jordan, M.I. (2003), "An introduction to MCMC for machine learning", Mach. Learn., 50(1), 5-43. https://doi.org/10.1023/A:1020281327116
- Bayes, T. (1763), "An essay towards solving a problem in the doctrine of chances", Reprint of R. Soc. Lond. Philos. Trans. 53, 370-418. https://doi.org/10.1098/rstl.1763.0053
- Box, G. and Tiao, G. (1992), Bayesian Inference in Statistical Analysis, John Wiley & Sons, New York, USA.
- Bernardo, J. and Smith, A. (2000), Bayesian Theory, John Wiley & Sons, New York, USA.
- Beck, K., Niendorf, B. and Peterson, P. (2012), "The use of Bayesian methods in financial research", Invest. Manage. Financ. Innov., 9(3), 68-75.
- Damien, P., Wakefield, J. and Walker, S. (1999), "Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables", J. Roy. Stat. Soc. B., 61(2), 331-344. https://doi.org/10.1111/1467-9868.00179
- Erto, P, Lanzotti, A and Lepore, A. (2010), "Wind speed parameter estimation from one-month sample via Bayesian approach", Qual. Reliab. Eng. Int., 26(8), 853-862. https://doi.org/10.1002/qre.1184
- Geyer, C.J. (1992), "Practical markov chain monte carlo", Stat. Sci., 7(4), 473-483. https://doi.org/10.1214/ss/1177011137
- Geman, S. and Geman, D. (1984), "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images". IEEE T. Pattern. Anal., 6(6), 721-741.
- Gelfand, A.E. and Smith, A.F.M. (1990), "Sampling-based approaches to calculating marginal densities", J. Am. Stat. Assoc., 85(409), 398-409. https://doi.org/10.1080/01621459.1990.10476213
- Hastings, W.K. (1970), "Monte Carlo sampling method using Markov chains and their Applications", Biometrika, 5(1), 97-109.
- Higdon, D.M. (1998), "Auxiliary variable methods for Markov chain Monte Carlo with application", J. Am. Stat. Assoc., 93(442), 585-595. https://doi.org/10.1080/01621459.1998.10473712
- Lam, H.F., Peng, H.Y. and Au, S.K. (2014), "Development of a practical algorithm for Bayesian model updating of a coupled slab system utilizing field test data", Eng. Struct., 79, 182-194. https://doi.org/10.1016/j.engstruct.2014.08.014
- Marin, J.M., Pierre P., Christian P. R., and Robin J. R. (2012), "Approximate Bayesian computational methods", Stat. Comput., 22(6), 1167-1180. https://doi.org/10.1007/s11222-011-9288-2
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953), "Equations of state calculations by fast computing machines", J. Chem. Phys., 21(6), 1087-1091. https://doi.org/10.1063/1.1699114
- Neal and Radford, M. (2003), "Slice sampling", Ann. Stat., 31(3), 705-767. https://doi.org/10.1214/aos/1056562461
- Pardo-lguzquiza, E. (1999), "Bayesian inference of spatial covariance parameters", Math. Geol., 31(1), 47-65. https://doi.org/10.1023/A:1007522230013
- Pang, W.K., Foster, J.J. and Troutt, M.D. (2001), "Estimation of wind speed distribution using Markov chain Monte Carlo techniques", J. Appl. Meteorol., 40, 1476-1484. https://doi.org/10.1175/1520-0450(2001)040<1476:EOWSDU>2.0.CO;2
- Smith, R.L. and Naylor, J.C. (1987), "A comparison of maximum likelihood estimation and Bayesian estimators for the threeparameter Weibull distribution", Appl. Stat., 36, 358-369. https://doi.org/10.2307/2347795
- Wakefield, J.C., Gelfand, A.E. and Smith, A.F.M. (1991), "Efficient generation of random variates via the ratio-ofuniforms methods", Stat. Comput., 1(2), 129-133. https://doi.org/10.1007/BF01889987
- Weibull, W. (1951), "A statistical distribution function of wide applicability", J. Appl. Mech., 18(3), 293-297.
- Yang, J, Astitha, M, Anagnostou, E. and Hartman, B. (2017), "Using a Bayesian regression approach on dual-model windstorm simulations to improve wind speed prediction", J. Appl. Meteorol. Clim., 56(4), 1155-1174. https://doi.org/10.1175/JAMC-D-16-0206.1
Cited by
- Critical review of data-driven decision-making in bridge operation and maintenance vol.18, pp.1, 2018, https://doi.org/10.1080/15732479.2020.1833946