Acknowledgement
Supported by : Central Universities
References
- Ak, H., Iphar, M., Yavuz, M. and Konuk, A. (2009), "Evaluation of ground vibration effect of blast operations in a magnesite mine", Soil Dyn. Earthq. Eng., 29(4), 669-676. https://doi.org/10.1016/j.soildyn.2008.07.003
- Aldas, G.G.U. (2010), "Explosive charge mass and peak particle velocity (ppv)-frequency relation in mining blast", J Geophys. Eng., 7(3), 223-231. https://doi.org/10.1088/1742-2132/7/3/001
- Amnieh, H.B., Siamaki, A. and Soltani, S. (2012), "Design of blast pattern in proportion to the peak particle velocity (ppv): artificial neural networks approach", Safety Sci., 50(9), 1913-1916. https://doi.org/10.1016/j.ssci.2012.05.008
- Arora, S. and Dey, K. (2010), "Estimation of near-field peak particle velocity: a mathematical model", J. Geol. Min. Res., 2(4), 68-73.
- BS 7385: part 2 (1993), Evaluation and measurement for vibration in buildings, part 2 Guide to damage levels from groundborne vibration, British standards institution; London, British.
- Dargahi-Noubary, G.R. (1998), "Statistical estimation of corner frequency and its application to seismic event-identification", Soil Dyn. Earthq. Eng., 17(5), 297-309. https://doi.org/10.1016/S0267-7261(98)00016-5
- Dehghani, H. and Ataee-Pour, M. (2011), "Development of a model to predict peak particle velocity in a blast operation", Int. J. Rock Mech. Min. Sci., 48(1), 51-58. https://doi.org/10.1016/j.ijrmms.2010.08.005
- Dowding, C.H. (1992), "Suggested method for blast vibration monitoring", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 29(2), 145-156. https://doi.org/10.1016/0148-9062(92)92124-U
- Faradonbeh, R.S., Armaghani, D.J., Majid, M.Z.A., Tahir, M.M., Murlidhar, B.R., Monjezi, M. and Wong, H.M. (2016), "Prediction of ground vibration due to quarry blast based on gene expression programming: a new model for peak particle velocity prediction", Int. J. Environ. Sci. Technol., 13(6), 1453-1464. https://doi.org/10.1007/s13762-016-0979-2
- B6722-2014 (2014), Safety Regulations for Blast, China Standard Press; Beijing, China.
- GB/T50452-2008 (2008), Code for Anti-industrial Vibration of Ancient Structures, China Architecture & Building Press; Beijing, China.
- Grechka, V., Artman, B., Eisner, L., Heigl, W. and Wilson, S. (2015), "Microseismic monitoring-introduction", Geophys., 80(6), WCi-WCii. https://doi.org/10.1190/2015-0917-SPSEINTRO.1
- Hasanipanah, M., Faradonbeh, R.S., Amnieh, H.B., Armaghani, D. J. and Monjezi, M. (2017), "Forecasting blast-induced ground vibration developing a cart model", Eng. Comput., 33(2), 307-316. https://doi.org/10.1007/s00366-016-0475-9
- Jiang, N. and Zhou, C. (2012), "Blast vibration safety criterion for a tunnel liner structure", Tunn. Undergr. Sp. Tech., 32(6), 52-57. https://doi.org/10.1016/j.tust.2012.04.016
- Li, L.P., Li, S.C., Zhang, Q.S., Wang, G. and Ma, F.K. (2008), "Monitoring blast excavation of shallow-buried large-span tunnel and vibration reduction technology", Rock Soil Mech., 29(8), 2292-2296 (in Chinese).
- Lu, W.B., Luo, Y. and Shu, D.Q. (2012), "An introduction to Chinese safety regulations for blast vibration", Environ. Earth Sci., 67(7), 1951-1959. https://doi.org/10.1007/s12665-012-1636-9
- Lu, W.B., Zhang, L., Zhou, J.R., Jin, X.H., Chen, M. and Yan, P. (2013), "Theoretical analysis on decay mechanism and law of blast vibration frequency", Blast, 30(2), 1-7.
- Lutovac, S., Gluscevic, B., Tokalic, R., Majstorovic, J. and Beljic, C. (2018). "Models of determining the parameters of rock mass oscillation equation with experimental and mass blastings", Minerals, 8(2).70-88. https://doi.org/10.3390/min8020070
- Monjezi, M., Ghafurikalajahi, M. and Bahrami, A. (2011), "Prediction of blast-induced ground vibration using artificial neural networks", Tunn. Undergr. Sp. Tech., 26(1), 46-50. https://doi.org/10.1016/j.tust.2010.05.002
- Nateghi, R. (2012), "Evaluation of blast induced ground vibration for minimizing negative effects on surrounding structures", Soil Dyn. Earthq. Eng., 43(12), 133-138. https://doi.org/10.1016/j.soildyn.2012.07.009
- New, B.M. (1986), "Ground vibration caused by civil engineering works", Transport and Road Research Laboratory Research Report, Report 53:19
- Ricker, N.H. (1977), Transient Waves in Visco-Elastic Media, Elsevier Scientific Publishing Company, Amstrerdam, The Netherlans.
- Sadovskii, M.A., Mel'Nikov, N.V. and Demidyuk, G.P. (1973), "The main trends in the development of blast techniques in mining", Soviet Mining, 9(3), 257-264. https://doi.org/10.1007/BF02503704
- Saiang, D. and Nordlund, E. (2009), "Numerical analyses of the influence of blast-induced damaged rock around shallow tunnels in brittle rock", Rock Mech. Rock Eng., 42(3), 421-448. https://doi.org/10.1007/s00603-008-0013-1
- Sambuelli, L. (2009), "Theoretical derivation of a peak particle velocity-distance law for the prediction of vibrations from blast", Rock Mech. Rock Eng., 42(3), 547-556. https://doi.org/10.1007/s00603-008-0014-0
- Sato, T. and Hirasawa, T. (1973), "Body wave spectra from propagating shear cracks", J. Phys. Earth., 21(4), 415-431. https://doi.org/10.4294/jpe1952.21.415
- Sharif, A.K. (2000), "Dynamic performance investigation of base isolated structures", Ph.D. Dissertation, Imperial College London, London
- Verma, H.K., Samadhiya, N.K., Singh, M., Goel, R.K. and Singh, P. K. (2018), "Blast induced rock mass damage around tunnels", Tunn. Undergr. Sp. Tech., 71, 149-158. https://doi.org/10.1016/j.tust.2017.08.019
- Wyss, M., Hanks, T.C. and Liebermann, R.C. (1971), "Comparison of p-wave spectra of underground explosions and earthquakes", J. Geophys. Res., 76(11), 2716-2729. https://doi.org/10.1029/JB076i011p02716
- Xia, X., Li, H., Liu, Y. and Yu, C. (2018), "A case study on the cavity effect of a water tunnel on the ground vibrations induced by excavating blasts", Tunn. Undergr. Sp. Tech., 71, 292-297. https://doi.org/10.1016/j.tust.2017.08.026
- Xiao, Y.X., Feng, X.T., Hudson, J.A., Chen, B.R., Feng, G.L. and Liu, J.P. (2016), "Isrm suggested method for in situ microseismic monitoring of the fracturing process in rock masses", Rock Mech. Rock Eng., 49(1), 343-369. https://doi.org/10.1007/s00603-015-0859-y
- Yang, J., Lu, W., Jiang, Q., Yao, C., Jiang, S. and Tian, L. (2016), "A study on the vibration frequency of blast excavation in highly stressed rock masses", Rock Mech. Rock Eng., 49(7), 2825-2843. https://doi.org/10.1007/s00603-016-0964-6
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct Syst., 12(3), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363
- Ye, X.W., Su, Y.H. and Han, J.P. (2014), "Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review", Sci. World J., 2014, 652329, 1-11
- Ye, X.W., Xi, P.S., Su, Y.H., Chen, B. and Han, J.P. (2018), "Stochastic characterization of wind field characteristics of an arch bridge instrumented with structural health monitoring system", Struct Saf., 71, 47-56. https://doi.org/10.1016/j.strusafe.2017.11.003
- Zhang, D.L., Fang, Q., Hou, Y.J., Li, P.F. and Wong, L.N.Y. (2013), "Protection of buildings against damages as a result of adjacent large-span tunneling in shallowly buried soft ground", J. Geotech. Geoenviron. Eng., 139(6), 903-913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000823
Cited by
- Optimization Analysis of Controlled Blasting for Passing through Houses at Close Range in Super-Large Section Tunnels vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1941436
- Safety Distance of Shotcrete Subjected to Blasting Vibration in Large-Span High-Speed Railway Tunnels vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/2429713
- Geotechnical monitoring and safety assessment of large-span triple tunnels using drilling and blasting method vol.21, pp.5, 2019, https://doi.org/10.21595/jve.2019.20615
- Study on the propagation mechanism of blast waves using the ultra-dynamic strain test system vol.28, pp.1, 2018, https://doi.org/10.12989/sss.2021.28.1.143
- Space-Time Effect Prediction of Blasting Vibration Based on Intelligent Automatic Blasting Vibration Monitoring System vol.12, pp.1, 2022, https://doi.org/10.3390/app12010012