References
- Barut, A., Das, M. and Madenci, E. (2006). "Nonlinear deformations of flapping wings on a micro air vehicle", Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, U.S.A., May.
- Beer, F.P., Johnston, E.R., DeWolf, J.T. and Mazurek, D.F. (2011), Mechanics of Materials, McGraw-Hill, New York, U.S.A.
- Combes, S.A. and Daniel, T.L. (2003), "Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth manduca sexta", J. Exper. Biol., 206(17), 2999-3006. https://doi.org/10.1242/jeb.00502
- Daniel, T.L. and Combes, S.A. (2002), "Flexible wings and fins: Bending by inertial or fluid-dynamic forces?", Integr. Comparat. Biol., 42(5), 1044-1049. https://doi.org/10.1093/icb/42.5.1044
- De Rosis, A., Falcucci, G., Ubertini, S. and Ubertini, F. (2014), "Aeroelastic study of flexible flapping wings by a coupled lattice boltzmann-finite element approach with immersed boundary method", J. Flu. Struct., 49, 516-533. https://doi.org/10.1016/j.jfluidstructs.2014.05.010
- Heathcote, S., Wang, Z. and Gursul, I. (2008), "Effect of spanwise flexibility on flapping wing propulsion", J. Flu. Struct., 24(2), 183-199. https://doi.org/10.1016/j.jfluidstructs.2007.08.003
- Hollkamp, J.J. and Gordon, R.W. (2008), "Reduced-order models for nonlinear response prediction: Implicit condensation and expansion", J. Sound Vibr., 318(4), 1139-1153. https://doi.org/10.1016/j.jsv.2008.04.035
- Isogai, K. and Harino, Y. (2007), "Optimum aeroelastic design of a flapping wing", J. Aircr., 44(6), 2040-2048. https://doi.org/10.2514/1.27142
- Kim, D.K. and Han, H. (2008). "A dynamic model of a flexible flapping wing for fluid-structure interaction analysis", Proceedings of the 15th International Congress on Sound and Vibration, Daejeon, Korea, July.
- Larijani, R.F. and DeLaurier, J.D. (2001), "A nonlinear aeroelastic model for the study of flapping wing flight", Progr. Astronaut. Aeronaut., 195, 399-428.
- Li, Y., Nahon, M. and Sharf, I. (2009), "Dynamics modeling and simulation of flexible airships", AIAA J., 47(3), 592-605. https://doi.org/10.2514/1.37455
- Mazaheri, K. and Ebrahimi, A. (2010), "Experimental study on interaction of aerodynamics with flexible wings of flapping vehicles in hovering and cruise flight", Arch. Appl. Mech., 80(11), 1255-1269. https://doi.org/10.1007/s00419-009-0360-8
- McEwan, M., Wright, J., Cooper, J. and Leung, A. (2001). "A finite element/modal technique for nonlinear plate and stiffened panel response prediction", Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit Technical Papers, Anaheim, California, U.S.A., June.
- Meirovitch, L. and Tuzcu, I. (2003), Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft, NASA/CR-2003-211748, National Aeronautics and Space Administration, Langley Research Center.
- MSC Nastran (2010), MSC Nastran 2010 User's Manual, MSC.Software Corporation, Sant Ana, U.S.A.
- Nakata, T. and Liu, H. (2012), "A fluid-structure interaction model of insect flight with flexible wings", J. Comput. Phys., 231(4), 1822-1847. https://doi.org/10.1016/j.jcp.2011.11.005
- Ogata, K. (2010), Modern Control Engineering, Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
- Olivier, M. and Dumas, G. (2016), "Effects of mass and chordwise flexibility on 2D self-propelled flapping wings", J. Flu. Struct., 64, 46-66. https://doi.org/10.1016/j.jfluidstructs.2016.04.002
- Platus, D. (1992), "Aeroelastic stability of slender, spinning missiles", J. Guid. Contr. Dyn., 15(1), 144-151. https://doi.org/10.2514/3.20812
- Pourtakdoust, S. and Assadian, N. (2004), "Investigation of thrust effect on the vibrational characteristics of flexible guided missiles", J. Sound Vibr., 272(1), 287-299. https://doi.org/10.1016/S0022-460X(03)00779-X
- Pourtakdoust, S.H. and Aliabadi, S.K. (2012), "Evaluation of flapping wing propulsion based on a new experimentally validated aeroelastic model", Sci. Iran., 19(3), 472-482. https://doi.org/10.1016/j.scient.2012.03.004
- Rizzi, S.A. and Muravyov, A.A. (2002), Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes, NASA/TP-2002-211761, National Aeronautics and Space Administration.
- Shyy, W., Berg, M. and Ljungqvist, D. (1999), "Flapping and flexible wings for biological and micro air vehicles", Progr. Aerosp. Sci., 35(5), 455-505. https://doi.org/10.1016/S0376-0421(98)00016-5
- Singh, B. and Chopra, I. (2007). "An aeroelastic analysis for the design of insect-based flapping wings", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, U.S.A., April.
- Smith, M. (1995), "The effects of flexibility on the aerodynamics of moth wings-towards the development of flapping-wing technology", Proceedings of the 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, U.S.A., January.
- Wilson, N. and Wereley, N. (2007), "Experimental investigation of flapping wing performance in hover", 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, U.S.A., April.
- Wootton, R.J. (1992), "Functional morphology of insect wings", Ann. Rev. Entomol., 37(1), 113-140. https://doi.org/10.1146/annurev.en.37.010192.000553
- Yeo, D., Atkins, E.M., Bernal, L.P. and Shyy, W. (2013), "Experimental characterization of lift on a rigid flapping wing", J. Aircr., 50(6), 1806-1821. https://doi.org/10.2514/1.C032168
- Zhao, L., Huang, Q., Deng, X. and Sane, S.P. (2010), "Aerodynamic effects of flexibility in flapping wings", J. Roy. Soc. Interf., 7(44), 485-497. https://doi.org/10.1098/rsif.2009.0200