DOI QR코드

DOI QR Code

Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Heidar, Ebrahim (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2017.06.02
  • 심사 : 2017.09.25
  • 발행 : 2018.05.25

초록

This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using incompressible material's constitutive equation, we extract governing differential equation of four orders; to solution this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The obtained result in a particular case is compared with another work and coincidence of results is shown. We will find out that surface effect tends to split micro disc's area to compressive and tensile while nonlocal parameter tries to converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro turbines (under glass transition temperature).

키워드

참고문헌

  1. Agari, Y., Anan, Y., Nomura, R. and Kawasaki, Y. (2007), "Estimation of the compositional gradient in a PVC/PMMA graded blend prepared by the dissolution-diffusion method", Polym., 48(4), 1139-1147. https://doi.org/10.1016/j.polymer.2006.11.064
  2. Agari, Y., Shimada, M., Ueda, A. and Nagai, S. (1996), "Preparation, characterization and properties of gradient polymer blends: discussion of poly (vinyl chloride)/poly (methyl methacrylate) blend films containing a wide compositional gradient phase", Macromol. Chem. Phys., 197(6), 2017-2033. https://doi.org/10.1002/macp.1996.021970619
  3. Agari, Y. (2002), "Polymer blends, functionally graded", Encyclopedia Smart Mater., John Wiley and Sons, U.S.A.
  4. Aichmayer, L., Spelling, J., Laumert, B. and Fransson, T. (2013), "Micro gas-turbine design for small-scale hybrid solar power plants", J. Eng. Gas Turb. Power, 135(11), 113001. https://doi.org/10.1115/1.4025077
  5. Anani, Y. and Rahimi, G.H. (2016), "Stress analysis of rotating cylindrical shell composed of functionally graded incompressible hyperelastic materials", Int. J. Mech. Sci., 108, 122-128.
  6. Bilgili, E. (2003), "Controlling the stress-strain inhomogeneities in axially sheared and radially heated hollow rubber tubes via functional grading", Mech. Res. Comm., 30(3), 257-266. https://doi.org/10.1016/S0093-6413(03)00008-9
  7. Bilgili, E. (2004), "Functional grading of rubber tubes within the context of a molecularly inspired finite thermoelastic model", Acta Mech., 169(1-4), 79-85. https://doi.org/10.1007/s00707-004-0094-1
  8. Carmine L. and Quadrini, F. (2009), "Indentation of functionally graded polyester composites", Measurement, 42(6), 894-902. https://doi.org/10.1016/j.measurement.2009.01.006
  9. Cetin, E., Kursun, A., Aksoy, S. and Cetin, M.T. (2014), "Elastic stress analysis of annular bi-material discs with variable thickness under mechanical and thermomechanical loads", World Academy of Science, Engineering and Technology, Int. J. Mech., Aerospace, Ind., Mechatronic Manuf. Eng., 8(2), 288-292.
  10. Chakraborty, A., Dutta, A.K., Ray, K.K. and Subrahmanyam, J. (2009), "An effort to fabricate and characterize in-situ formed graded structure in a ceramic-metal system", J. Mater. Process. Technol., 209(5), 2681-2692. https://doi.org/10.1016/j.jmatprotec.2008.06.022
  11. Ding, S., Li, Y. and Li, G. (2014), "Evaluation of thermal loadings to ameliorate stress in a rotating disk", J. Thermophys. Heat Transf., 28(4), 667-678. https://doi.org/10.2514/1.T4352
  12. Dryden, J.R. and Batra, R.C. (2013), "Material tailoring and moduli homogenization for finite twisting deformations of functionally graded Mooney-Rivlin hollow cylinders", Acta Mech., 224(4), 811-818. https://doi.org/10.1007/s00707-012-0784-z
  13. Ebrahimi F. and Rastgoo, A. (2008a), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17(1), 015044. https://doi.org/10.1088/0964-1726/17/1/015044
  14. Ebrahimi F. and Rastgoo, A. (2008b), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008
  15. Ebrahimi F. and Rastgoo, A. (2008c), "Free vibration analysis of smart FGM plates", Int. J. Mech. Sys. Sci. Eng., 2(2), 94-99.
  16. Ebrahimi F. and Daman, M. (2016), "Dynamic modeling of embedded curved nanobeams incorporating surface effects", Coupled Syst. Mech., 5(3), 255-268. https://doi.org/10.12989/csm.2016.5.3.255
  17. Ebrahimi F., Rastgoo, A. and Atai, A.A. (2009a), "Theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech. A-Solid., 28(5), 962-997. https://doi.org/10.1016/j.euromechsol.2008.12.008
  18. Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098
  19. Ebrahimi, F. and Salari, E. (2015a), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  20. Ebrahimi, F. and Salari, E. (2015b), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronaut., 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  21. Ebrahimi, F. and Salari, E. (2015c) "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B-Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  22. Ebrahimi, F. and Salari, E. (2015d), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105(2), 151-181.
  23. Ebrahimi, F. and Salari, E. (2015e), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct. 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  24. Ebrahimi, F. and Salari, E. (2015f), "Thermo-mechanical vibration analysis of nonlocal temperaturedependent FG nanobeams with various boundary conditions", Compos. Part B-Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  25. Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Euro. Phys. J. Plus, 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
  26. Ebrahimi, F. and Barati, M.R. (2016b), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  27. Ebrahimi, F. and Barati, M.R. (2016c), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 1-25. https://doi.org/10.1080/19475411.2016.1148077
  28. Ebrahimi, F. and Barati, M.R. (2016d), "An exact solution for buckling analysis of embedded piezoelectromagnetically actuated nanoscale beams", Adv. Nano Res, 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  29. Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of smart size-dependent higher order magnetoelectro-thermo-elastic functionally graded nanosize beams", J. Mech., 33(1), 1-11.
  30. Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  31. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564.
  32. Ebrahimi, F. and Barati, M.R. (2016h), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Society Mech. Sci. Eng., 39(3), 1-16.
  33. Ebrahimi, F. and Barati, M.R. (2016i), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., Submitted.
  34. Ebrahimi, F. and Barati, M.R. (2016j), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  35. Ebrahimi, F. and Barati, M.R. (2016k), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
  36. Ebrahimi, F. and Barati, M.R. (2016l), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  37. Ebrahimi, F. and Barati, M.R. (2016m), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  38. Ebrahimi, F. and Barati, M.R. (2016n), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 1-13.
  39. Ebrahimi, F. and Barati, M.R. (2016o), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  40. Ebrahimi, F. and Barati, M.R. (2016p), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
  41. Ebrahimi, F. and Barati, M.R. (2016q), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1
  42. Ebrahimi, F. and Barati, M.R. (2016r), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 1-12.
  43. Ebrahimi, F. and Barati, M.R. (2016s), "On nonlocal characteristics of curved inhomogeneous Euler-Bernoulli nanobeams under different temperature distributions", Appl. Phys. A, 122(10), 880. https://doi.org/10.1007/s00339-016-0399-7
  44. Ebrahimi, F. and Barati, M.R. (2016t), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intell. Mater. Syst. Struct., 28(11), 1472-1490.
  45. Ebrahimi, F. and Barati, M.R. (2016u), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9
  46. Ebrahimi, F. and Barati, M.R. (2016v), "Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates", J. Brazil. Society Mech. Sci. Eng., 39(6), 1-21.
  47. Ebrahimi, F. and Barati, M.R. (2017a), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
  48. Ebrahimi, F. and Barati, M.R. (2017b), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  49. Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16001-3
  50. Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates", Appl. Phys. A, 122(10), 922. https://doi.org/10.1007/s00339-016-0452-6
  51. Ebrahimi, F. and Hosseini, S.H.S. (2016c), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  52. Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Society Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7
  53. Ebrahimi, F. and Nasirzadeh, P. (2015), "A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method", J. Theor. Appl. Mech., 53(4), 1041-1052.
  54. Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  55. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronaut., 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
  56. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
  57. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015b), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Tech., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  58. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016a), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccan., 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
  59. Ebrahimi, F., Naei, M.H. and Rastgoo, A. (2009b), "Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation", J. Mech. Sci. Technol., 23(8), 2107-2124. https://doi.org/10.1007/s12206-009-0358-8
  60. Ebrahimi, F., Rastgoo, A. and Kargarnovin, M.H. (2008), "Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers", J. Mech. Sci. Technol., 22(6), 1058-1072. https://doi.org/10.1007/s12206-008-0303-2
  61. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  62. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016c), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccan., 51(4), 951-977. https://doi.org/10.1007/s11012-015-0248-3
  63. Ebrahimi, F., Gholam, R.S. and Boreiry, M. (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. https://doi.org/10.12989/sem.2016.57.1.179
  64. Eraslan, A.N. and Akis, T. (2015), "On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems", Acta Mech., 181(1-2), 43-63. https://doi.org/10.1007/s00707-005-0276-5
  65. Eraslan, A.N. and Arslan, E. (2015), "Analytical and numerical solutions to a rotating FGM disk", J. Multidiscip. Eng. Sci. Technol., 2(10), 2843-2850.
  66. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media, U.S.A.
  67. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. An., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  68. Horgan, C.O. and Chan, A.M. (1999), "The stress response of functionally graded isotropic linearly elastic rotating disks", J. Elasticity, 55(3), 219-230. https://doi.org/10.1023/A:1007644331856
  69. Hosseini, M. and Dini, A. (2015), "Magneto-thermo-elastic response of a rotating functionally graded cylinder", Struct. Eng. Mech., 56(1), 137-156. https://doi.org/10.12989/sem.2015.56.1.137
  70. Jahed, H., Farshi, B. and Bidabadi, J. (2005), "Minimum weight design of inhomogeneous rotating discs", Int. J. Pressure Vessels Piping, 82(1), 35-41. https://doi.org/10.1016/j.ijpvp.2004.06.006
  71. Kordkheili, S.A.H. and Naghdabadi, R. (2007), "Thermoelastic analysis of a functionally graded rotating disk", Compos. Struct., 79(4), 508-516. https://doi.org/10.1016/j.compstruct.2006.02.010
  72. Leu, S.Y. and Chien, L.C. (2015), "Thermoelastic analysis of functionally graded rotating disks with variable thickness involving non-uniform heat source", J. Therm. Stress., 38(4), 415-426. https://doi.org/10.1080/01495739.2015.1015892
  73. Lu, Pin, He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
  74. Mott, P.H., Dorgan, J.R. and Roland, C.M. (2008), "The bulk modulus and poisson's ratio of "incompressible" materials", J. Sound Vib., 312(4), 572-575. https://doi.org/10.1016/j.jsv.2008.01.026
  75. Nie, G.J. and Batra, R.C. (2010), "Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness", Compos. Struct., 92(3), 720-729. https://doi.org/10.1016/j.compstruct.2009.08.052
  76. Rajagopal, K.R. (2008), "Boundary layers in finite thermoelasticity", J. Elasticity, 36(3), 271-301. https://doi.org/10.1007/BF00040851
  77. Schwartz, M. (2008), Smart Materials, CRC Press, U.S.A.
  78. Shu, C. (2012), Differential Quadrature and Its Application in Engineering. Springer Science and Business Media, U.S.A.
  79. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd ed., McGraw-Hill, U.S.A.
  80. Tutuncu, N. and Temel, B. (2013), "An efficient unified method for thermoelastic analysis of functionally graded rotating disks of variable thickness", Mech. Adv. Mater. Struct., 20(1), 38-46. https://doi.org/10.1080/15376494.2011.581413
  81. Zafarmand, H. and Kadkhodayan, M. (2015), "Nonlinear analysis of functionally graded nanocomposite rotating thick disks with variable thickness reinforced with carbon nanotubes", Aerosp. Sci. Technol., 41, 47-54. https://doi.org/10.1016/j.ast.2014.12.002
  82. Zamani, S.A., Omran, S.T., Asadi, B., and Hosseinzadeh, M. (2014), "Numerical simulation and plan stress analytical solution of rotating disk in high speed", Indian J. Sci. Res. 3(1), 124-136.
  83. Zenkour, A.M. (2006), "Thermoelastic solutions for annular disks with arbitrary variable thickness", Struct. Eng. Mech., 24(5), 515-528. https://doi.org/10.12989/sem.2006.24.5.515
  84. Zhen, L., Yong-kai, Q. and Lai-he, Z. (2015), "Heat transfer measurements on a micro disk with high rotational speed", Proceedings of International Conference on Structural, Mechanical and Materials Engineering, Dalian, China, November.
  85. Zhou, D., Mei, J., Chen, J., Zhang, H., and Weng, S. (2014), "Parametric analysis on hybrid system of solid oxide fuel cell and micro gas turbine with CO2 capture", J. Fuel Cell Sci. Technol. 11(5) 051001. https://doi.org/10.1115/1.4027393
  86. Zhu, X. and Li, L. (2017), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067