DOI QR코드

DOI QR Code

Bounds for Generalized Normalized δ-Casorati Curvatures for Submanifolds in Generalized (κ, µ)-space Forms

  • Aquib, Mohd (Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia) ;
  • Shahid, Mohammad Hasan (Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia)
  • Received : 2017.07.07
  • Accepted : 2018.02.08
  • Published : 2018.03.23

Abstract

In this paper, we prove the optimal inequalities for the generalized normalized ${\delta}$-Casorati curvature and the normalized scalar curvature for different submanifolds in generalized (${\kappa},{\mu}$)-space forms. The proof is based on an optimization procedure involving a quadratic polynomial in the components of the second fundamental form. We also characterize the submanifolds on which equalities hold.

Keywords

References

  1. M. Aquib, Bounds for generalized normalized $\delta$-Casorati curvatures for bi-slant sub-manifolds in T-space forms, Filomat, 32(2018), 329-340. https://doi.org/10.2298/FIL1801329A
  2. A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized $({\kappa},\;\mu)$-space forms, Mediterr. J.Math., 10(1)(2013), 475-496. https://doi.org/10.1007/s00009-012-0196-2
  3. F. Casorati, Mesure de la courbure des surface suivant 1'idee commune. Ses rapports avec les mesures de coubure gaussienne et moyenne, Acta Math., 14(1890), 95-110. https://doi.org/10.1007/BF02413317
  4. B. Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J., 41(1999), 33-41. https://doi.org/10.1017/S0017089599970271
  5. B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. math., 60(1993), 568-578. https://doi.org/10.1007/BF01236084
  6. S. Decu, S. Haesen and L. Verstralelen, Optimal inequalities involving Casorati curvatures, Bull. Transylv. Univ. Brasov, Ser B, 49(2007), 85-93.
  7. V. Ghisoiu, Inequalities for the Casorati curvatures of the slant submanifolds in com- plex space forms, Riemannian geometry and applications. Proceedings RIGA 2011, ed. Univ. Bucuresti, Bucharest,(2011), 145-150.
  8. S. Haesen, D. Kowalczyk and L. Verstralelen, On the extrinsic principal directions of Riemannnian submanifolds, Note Mat., 29(2009), 41-53.
  9. J. S. Kim, Y. M. Song and M. M. Tripathi, B. Y. Chen inequalities for submanifolds in generalized complex space forms, Bull. Korean Math. Soc., 40(3)(2003), 411-423. https://doi.org/10.4134/BKMS.2003.40.3.411
  10. D. Kowalczyk, Casorati curvatures, Bull. Transilv. Univ. Brasov Ser. III, 50(1)(2008), 209-213.
  11. C. W. Lee, J. W. Lee, G. E. Vilcu and D. W. Yoon, Optimal inequalities for the Casorati curvatures of the submanifolds of generalized space forms endowed with semi- symmetric metric connections, Bull. Korean Math. Soc., 52(2015), 1631-1647. https://doi.org/10.4134/BKMS.2015.52.5.1631
  12. K. Matsumoto, I. Mihai and A. Oiaga, Ricci curvature of submanifolds in complex space forms, Rev. Roumaine Math. Pures Appl., 46(2001), 775-782.
  13. L. Verstralelen, Geometry of submanifolds I, The first Casorati curvature indicatrices, Kragujevac J. Math., 37(2013), 5-23.