DOI QR코드

DOI QR Code

Some Results on Locally Noetherian Modules and Locally Artinian Modules

  • Kourki, Farid (Centre Regional des Metiers de l'Education et de la Formation (CRMEF)-Tanger, Annexe de Larache) ;
  • Tribak, Rachid (Centre Regional des Metiers de l'Education et de la Formation (CRMEF)-Tanger, Avenue My Abdelaziz)
  • Received : 2016.11.13
  • Accepted : 2017.11.13
  • Published : 2018.03.23

Abstract

We prove that if R is a commutative ring, then every maximal ideal of R is idempotent if and only if every locally noetherian (locally artinian) R-module is semisimple.

Keywords

References

  1. F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics 13, New York, Springer-Verlag, 1974.
  2. I. Beck, $\Sigma$-injective modules, J. Algebra, 21(1972), 232-249. https://doi.org/10.1016/0021-8693(72)90019-1
  3. K. A. Byrd, Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc., 33(2)(1972), 235-240. https://doi.org/10.1090/S0002-9939-1972-0310009-7
  4. I. S. Cohen, Commutative rings with restricted minimum condition, Ducke Math. J., 17(1950), 27-42.
  5. D. V. Huynh and R. Wisbauer, A characterization of locally Artinian modules, J. Algebra, 132(1990), 287-293. https://doi.org/10.1016/0021-8693(90)90131-7
  6. T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics 189, New York, Springer-Verlag, 1999.
  7. D. W. Sharp and P. Vamos, Injective modules, Cambridge Tracts in Mathematics and Mathematical Physics 62, Cambridge University Press, 1971.
  8. H. H. Storrer, On Goldman's primary decomposition, Lecture Notes in Math., 246(1972), 617-661.
  9. A. Tuganbaev, Rings close to regular, Mathematics and its Applications 545, Kluwer Academic Publishers, Dordrecht, 2002.
  10. R. Wisbauer, Foundations of module and ring theory, Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia, 1991.