DOI QR코드

DOI QR Code

Characteristics of Tidal Current and Tidal Residual Current in the Archipelago Around Aphae Island in the Southwestern Waters of Korea

한국 서남해 압해도 주변 다도해역의 조류 및 조석잔차류 분포

  • Choo, Hyo-Sang (Faculty of Marine Technology, Chonnam National University) ;
  • Kim, Dong-Sun (Department of Ecological Engineering, Pukyong National University)
  • Received : 2018.02.12
  • Accepted : 2018.04.27
  • Published : 2018.04.30

Abstract

In order to understand the flow of currents around Aphae Island and the surrounding Archipelago, the numerical model experiments on tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have a reversing form and flow along the narrow channels of the archipelago. During periods of flood, currents flow from the west of Hwawon Peninsula to the archipelago to the northwest together with the currents flowing from the channels at Palgeum Island to Amtae Island and Amtae Island to Jeung Island. Ebb currents flow from the northwest archipelago to the channel of Amtae Island and Jeung Island as well as Amtae Island to Palgeum Island, further flowing south between Palgeum Island and Hwawon Peninsula. Flood currents are separated from east and west at the southern coast of Aphae Island, but flow south from both the west and east of Aphae Island to the channel found between Palgeum Island and Hwawon Peninsula at ebb. Flow speed is high between Amtae Island and Aphae Island where the flows meet and join. Lee wakes or topographical eddies are formed around the islands due to the high speed of the currents flowing along the narrow channel in the archipelago, manifesting as a tide-induced residual current. A weak cyclonic wake and anti-cyclonic eddy both exist at the west and northwestern coast of Aphae Island individually. The speed of the tide-induced residual current become slow on account of the wide littoral zone at exists around Aphae Island.

수치모델실험을 사용하여 한국 서남해 압해도 주변 해역의 조류 및 조석잔차류 분포를 파악하였다. 조류는 대체로 반 일주조가 탁월하며, 조류 주방향은 압해도 주변 다도해역이 좁은 협수로인 관계로 대부분 수로를 따라 형성되었다. 조류타원 형태는 주변수심 및 인근에 산재한 섬 주위 해저지형의 영향으로 대부분 직선에 가까운 왕복성이었으나, 매화도~증도 사이 기점도, 화도, 당사도 주위에 약한 회전성 조류타원 형태였다. 창조류는 화원반도 서쪽 연안을 따라 팔금도~암태도, 암태도~증도 수로에서 북동류한 조류와 함께 압해도 북서쪽 다도해로 빠지고, 낙조류는 반대로 북서 다도해의 협수로를 따라 암태도~증도, 암태도~팔금도를 통과하고 암태도~증도에서의 조류는 팔금도~화원반도 서쪽 연안을 따라 남류했다. 압해도 연안은 창조시 북류한 흐름이 해안에서 동서로 분류되어 압해도 서쪽과 동쪽을 따라 흐르고 낙조시는 조간대 만곡부에서 남류한 흐름과 섬 서쪽과 동쪽에서 남~남동류한 흐름이 팔금도~화원반도 사이로 흘렀다. 조류유속이 강한 곳은 암태도~압해도 사이 합류역이었다. 조석잔차류는 다도해 협수로의 빠른 유속으로 섬 주변 흐름 하류역에 후류와 또는 지형성와류가 형성되었다. 압해도 서쪽에 약한 반시계방향 와류와 압해도 북서 만곡부에 시계방향 환류가 존재했다. 북쪽 협수로를 제외한 압해도 연안은 조간대가 발달되어 조석잔차류 유속이 미약하였다.

Keywords

References

  1. Baek, W. S.(2002), A Study on the improvement of marine traffic system in Jindo coastal area, Ph.M.Thesis, Mokpo National Maritime University, pp. 47-52.
  2. Choo, H. S. and D. S. Kim(2013), Tide and Tidal Currents Around the Archipelago on the Southwestern Waters of the South Sea, Korea. J. of Korean Society of Marine Environment & Safety, 19(6), pp. 582-596. https://doi.org/10.7837/kosomes.2013.19.6.582
  3. Falconer, R. A.(1986), A two-dimensional mathematical model study of the nitrate levels in an inland natural basin. International conference on water quality modeling in the inland natural environment, Bournemouth, England, 10-13 June, pp. 325-344.
  4. Jung, T. S. and J. H. Choi(2010), Numerical Modeling of Ebb-Dominant Tidal Flow in the Mokpo Coastal Zone. J. of Korean Society of Coastal and Ocean Engineers, 22(5), pp. 333-343.
  5. Kang, J. H.(2002), Tidal propagation including shallow tides and corresponding sediment transport in the estuary which has vast tidal flats. Mokpo University, Ph D paper, pp. 33-35.
  6. KHOA(2001), Korea Hydrographic and Oceanographic Agency, Tidal Current Observations at MOKPO HANG AND APPROACHES. Technical Reports of Hydrography, pp. 62-109.
  7. KHOA(2009), Korea Hydrographic and Oceanographic Agency, West Coast of Korea Pilot. Pub. No. 130, pp. 12-46.
  8. KHOA(2013), Korea Hydrographic and Oceanographic Agency, Mean Sea Level.
  9. KIGAM(1997), Korea Institute of Geoscience And Mineral Resources, Assessment of Natural Aggregate Resources of Korea. KR-97(C)-48, p. 846.
  10. KONETIC(2003), Korea National Environmental Technology Information Center, Sea Level Rise of Peninsula, Impact Valuation of Coastal Environmental Change and Technique of Reaction according to Global Warming: Secondary Midway Report, pp. 40-54.
  11. KORDI(1996), Korea Ocean Research & Development Institute, Harmonic constants of Tide around the Korea Peninsula.
  12. Lim, H. S. and K. Y. Park(1999), Community Structure of Macrobenthos in the Subtidal Soft Bottom in Semi-enclosed Youngsan River Estuarine Bay, Southwest Coast of Korea. J. Korean Fish, Soc. 32(3), pp. 320-332.
  13. Lee, S. W.(1992), Korea Short Sea Information. Jipmundang, pp. 177-185.
  14. Maruyasu, T., S. Onisi and T. Nishimura(1981), Study of tidal vortices at the Naruto Strait through remote sensing. Tokyo Rica University Remote Sensing Res. Ins., Vol. 1.
  15. MLTMA(2011), Ministry of Land, Transport and Maritime Affairs, Result Report of Coastal Sea Investigation during 2011 in South of West Sea, Korea, pp. 103-118.
  16. Oonishi, Y.(1977), A numerical study on the tidal residual flow. J. Oceanogr. Soc. Jpn., 33, pp. 207-218. https://doi.org/10.1007/BF02109693
  17. Park, H. S., J. H. Lee and J. W. Choi(2000), Spatio-temporal Distributions of Macrobenthic Community on Subtidal Area around Mokpo, Korea. J. of the Korean Society of Oceanography, 5(2), pp. 169-176.
  18. Tee, K. T.(1976), Tide-induced residual current, a 2D nonlinear numerical tidal model. J. Mar. Res., 34, pp. 603-628.

Cited by

  1. 진해 및 마산항로 주변해역의 조석·조류특성 vol.57, pp.1, 2021, https://doi.org/10.3796/ksfot.2021.57.1.045