
Journal of the Korean Society of Marine Environment & Safety                                                            Research Paper

Vol. 24, No. 2, pp. 140-145, April 30, 2018, ISSN 1229-3431(Print) / ISSN 2287-3341(Online)            https://doi.org/10.7837/kosomes.2018.24.2.140

11. Introduction

Recently, the complex dynamical behaviors of nonlinear system 

like periodic, aperiodic and chaotic motion have attracted much 

interests of many researchers in the fields of nonlinear aircraft and 

vessel motions. Ocean mooring systems including single and 

multi-point mooring systems exhibit complex dynamical behavior 

* First Author: oksangdo@naver.com

 Corresponding Author : ssyou@kmou.ac.kr, 051-410-4366

due to nonlinear characteristics of restoring force (Umar et al. 

2010). Depending on the different initial conditions, these systems 

provide complex behaviors including co-existing periodic (harmonic 

as well as sub-harmonic) and aperiodic (quasi-periodic and chaotic) 

motions (Gottlieb and Yim, 1997). Therefore, the stability of 

mooring vessel is governed by strong sensitivity to initial 

conditions (Ellermann, 2005; Banik and Datta, 2010). 

In addition, mechanism of route to chaos is of great interests 

since they define the ways the system loses stability near a 

bifurcation point (Belato et al., 2001). A bifurcation represents the 
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Abstract : This paper deals with the dynamical analysis of a two-point mooring vessel under surge excitations. The characteristics of nonlinear 

behaviors are investigated completely including bifurcation and limit cycle according to particular input parameter changes. The strong nonlinearity of 

the mooring system is mainly caused by linear and cubic terms of restoring force. The numerical simulation is performed based on the fourth order 

Runge-Kutta algorithm. The bifurcation diagram and several instability phenomena are observed clearly by varying amplitudes as well as frequencies of 

surge excitations. Stable periodic solutions, called the periodic windows, can be obtained in succession between chaotic clouds of dots in case of 

frequency   rad/s. In addition, the chaotic region is unexpectedly increased when external forcing amplitude exceeds 1.0 with the angular frequency 

of   rad/s. Compared to the cases for    rad/s, the region of chaotic behavior becomes more fragile than in the case of   rad/s.  

Finally, various types of steady states including sub-harmonic motion, limit cycle, and symmetry breaking phenomenon are observed in the two-point 

mooring system at each parameter value. 
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요    약 : 본 연구는 두점식 선박 계류시스템의 종방향 외력에 대한 비선형 동적거동 해석을 수행하였다 특정 입력 매개변수에 대한 카 . 

오스 운동과 한계주기궤도 등의 비선형 거동의 특성을 연구하였다 주로 비선형복원력은 계류시스템의 강한 비선형성과 동적거동의 다양. 

성을 제공한다 계의 운동방정식 시뮬레이션에 사용된 수치 적분기는 차 룽게쿠타법이다 외력진폭과 주파수를 변화시킬 때 분기 그림. 4 . 

과 동적불안정 현상들을 볼 수 있다 외력의 주파수 진동수 가 . ( ) 0.4 인 경우 수많은 혼돈상태 점들 사이에 주기창이라 불리는 안정적인 rad/s

주기해가 관측된다 주파수가 . 0.7 인 경우는 외력진폭이 을 초과할 때 혼돈 영역이 갑자기 증가한다 주파수가 rad/s 1.0 . 1.0 인 경우는 주rad/s

파수가 0.4 및 rad/s 0.7 인 경우와 비교해 볼 때 혼돈 운동이 약화된다 아울러 두점식 계류시스템은 각 매개변수에서 준주기 운동 한rad/s , . , , 

계주기궤도 대칭성의 깨짐과 같은 다양한 정상상태의 궤적이 관측된다, . 

핵심용어 : 두점식 계류시스템 비선형 거동 분기 카오스 혼돈 한계주기궤도 준주기, , , ( ), , 
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sudden appearance of qualitatively different solutions for an 

nonlinear dynamical system as some parameter are varied. 

Bifurcation analysis is closely related to system stability and more 

complicated dynamical behaviors such as limit cycle and chaos 

(Zou and Nagarajaiah, 2015). The sensitivity depending on the 

initial condition is used to stabilize the chaotic behaviors in 

periodic orbits (Akhmet and Fen, 2012). 

When the two-point mooring system is harmonically excited, it 

essentially represents the nonlinear Duffing oscillator (Mitra et al., 

2017). Even when vessels are excited periodically by external 

waves, the system responses are ranging from harmonic or 

sub-harmonic to chaotic motions (Ellermann, 2005). Dynamical 

behaviors of a mooring vessel system under external excitations 

have been investigated by several researchers in the past years. 

With a time integration scheme, Umar and Datta (2003) studied the 

nonlinear behavior of multi-point moored buoy under the actions of 

first and second order of wave forces. By using a perturbation 

technique coupled with Hill's variational equation and Floquet's 

theory, they also analyzed the stability of a multi-point slack 

moored buoy under wave and wind forces (Umar et al., 2010). In 

addition, Ellermann (2005) investigated the dynamics of a moored 

barge under two different external excitations such as a periodic 

component and an addictive disturbance modelled as white noises 

with variable intensity. By employing incremental harmonic balance 

method with arc-length continuation, Banik and Datta (2010) 

analyzed the instability of a two-point mooring system in surge 

direction. Moreover, the stability analysis of surge oscillations of 

the two-point mooring system under state feedback control with 

time-delay is studied by Mitra et al. (2017). It is known that the 

choices of gains and delay values are shown to be highly effective 

to suppress primary responses. 

In this paper, we consider the two-point mooring system (with 

damped Duffing oscillator) in wave excitations and provide rich 

nonlinear behaviors, including limit cycles and chaotic oscillations. 

2. Mathematical Formulation

2.1 System Description

  The mooring model is introduced by Gottlieb and Yim (1992) 

and is further modelled as a single degree of freedom (surge) 

nonlinear system under wave excitations by Banik and Datta 

(2010). As depicted in Fig. 1, we assume that the vessel is 

constrained to move in one dimension (surge). 

(a) multi-point

(b) two-point

Fig. 1. Mooring system models: (a) for multi-point and (b) for 

two-point.

  The differential equation of vessel motion is derived based on 

equilibrium of geometric restoring force and the body motion under 

wave and current excitations. The dynamical equation of motion is 

described by the following classical form: 

   ″  ′ 
″ ′                    (1)

where   represent the surge motion () with ′    

( ) and ″   ( ). Specifically, the restoring 

force  has the form 

   


  
       (2)

with   


,  


,   , 

  


,   








 for   
 for   
  for   









                   (3)
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where   is the damping coefficient (),   is the vessel 

mass ( ),   is the added mass,   is the water density,   is 

the displaced volume of fluid,   is the inertia coefficient,   

represents external excitation force ( ), and   is the stiffness 

() defined by      (where   is elastic 

cable force) and  is the signum function. The nonlinear 

relationship between the restoring force and displacement depends 

on the values of non-dimensional parameter    . For 

    , the mooring model represents a strongly 

nonlinear two-point system (Banik and Datta, 2010; King and Yim, 

2007).

  The restoring force include a strong geometric nonlinearity 

depending on the mooring angles. The restoring force assumes 

linear elastic behavior so that the nonlinearity is strictly due to the 

geometric configuration of the system (King and Yim, 2007). The 

nonlinear relationship given by equation (2) is sourced from 

Gottlieb and Yim (1992). The restoring force is approximated by a 

least square representation: 

                                 (4)

where the coefficients   are functions of exciting frequency 

(Gottlieb, 1991). The governing system nonlinearity (   ) is 

mainly cubic ( ) term ignoring quadratic term. Polynomials of 

various orders have been employed and optimum fit within 

experimental range. In practice, the restoring force using linear and 

cubic polynomial form can be expressed as:

      

                                 (5)

where   represents the linear stiffness;   controls the amount of 

nonlinearity in the restoring force. 

 The two-point mooring system has strong nonlinearity due to the 

relatively large coefficient of the cubic term (Banik and Datta, 

2010). As described in equation (1), any forces applied to the 

dynamic model are scaled with the vessel mass or   



( ). For simplicity, but without loss of generality, we assume 

that the vessel   has just unit mass. Then the equation of motion 

of the two-point mooring system can be written as follows: 

   ″ ′                             (6)

where  is the displacement at time  , ′  is the first 

derivative of   with respect to time  , i.e., velocity, and ″ is 

the second time derivative of  , i.e., acceleration, and the 

excitation forcing function of   has the period of 

    ( ) and the frequency ( ) of    . 

By introducing the non-dimensional form     (), the 

equation of motion is now transformed to

       
                  (7)

where   , and    (Banik and Datta, 2010). 

The model parameters in the equation (7) are:   controls the 

amount of damping,   is the amplitude of the periodic excitation 

force, and   is the angular velocity (or angular frequency) in 

( ) of the driving force. 

3. Numerical Analysis 

  Numerical simulations are conducted in MatlabTM, adopting as a 

control parameter with initial condition. The parameter values for 

vessel model are listed in Table 1. Equation (7) is numerically 

integrated with the fourth-order Runge-Kutta method with time step 

∆  (s) because the results are relatively stable over time 

if the step is less than this value. An unsuitable time step could 

lead to numerical instability. Thus the numerical analysis can be 

guaranteed if the time step is comparatively small enough. 

  To illustrate the bifurcation diagram we have considered the 

state variables as   and  . The numerical simulation shows that 

equation (7) can lead to complex dynamical behaviors such as 

multi-periodic and chaotic states. Bifurcation diagrams (variable   

versus control parameter ) for the considered two-point mooring 

system are illustrated in Figs. 2, 4 and 6, where the values of   

(recorded after each period    ) is plotted versus the 

amplitude  of the excitation input. In addition to the bifurcation 

diagram, the phase portrait is displayed to describe various 

dynamical behaviors as shown in Figs. 3, 5 and 7. 

  Fig. 2 (a) is the bifurcation diagram obtained by varying  

from 0.1 to 0.7 for    . When the control parameter 

  is smoothly varied from 0.1, one can see the chaotic motions 
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persist for a range of  values. The magnification of a part of 

Fig. 2 (a) is shown in Fig. 2 (b). Here, stable periodic solutions, 

called the periodic windows, can be observed between chaotic 

clouds of dots. The phase portraits of Fig. 3 (a) and (b) show an 

example of chaotic orbit followed by periodic orbit at forcing 

amplitude     and  , respectively. 

  Fig. 4 depicts the bifurcation phenomenon where the response of 

  at every period of external drive versus the driving amplitude   

is plotted for    . We may observe that equation (6) 

starts with periodic motion for smaller value of  . It is interesting 

to note from Fig. 4 that the chaotic region is unexpectedly 

increased when external forcing amplitude exceeds 1.0. In the 

damped, forced oscillatory system given by equation (5), various 

types of steady states are observed on the system parameters 

( ) as well as on the initial condition (Ueda, 1991). Fig. 5 

represents the steady states trajectories observed at each of 

parameter values. Fig. 5 (a) and (b) show the  system responses to 

be sub-harmonic with a time period of 26 seconds. Banik and 

Datta (2010) introduced a variety of stable sub-harmonic responses 

such as     , and   in the range of 

  ∼ . The phase portrait of Fig. 5 (c) and the 

time history curves of Fig. 5 (d) indicate symmetry breaking 

bifurcation. Also, Fig. 5 (e) and (f) show two coexisting period  

partner orbits. 

  Fig. 6 illustrates the bifurcation phenomena when  is varied 

from 0.1 to 1.6 for    . The mooring system exhibits 

periodic solutions in contrast to the previous cases (     

 ), even if the value of   increases. The region of chaotic 

behavior becomes more fragile in case of     . When 

  is equal to 0.6, one stable symmetric oscillation occurs. Its limit 

cycle is presented in Fig. 7 (a).  

Parameters Values 

 0.01  

 0.0213  

 0.319    

Table 1. Model parameters for the mooring vessel

(a)

(b)

Fig. 2. (a) Bifurcation diagram obtained by varying  from 0.1 

to 0.7 for =0.4   (b) Magnification of a part of 

bifurcation diagram of Fig. 2 (a).

(a) =0.4   and =0.341

(b) =0.4   and =0.344

Fig. 3. Phase portraits (a) for =0.341 and (b) for =0.344.
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Fig. 4. Bifurcation diagram obtained by varying   from 0.1 to 

1.15 for =0.7  .

(a) =0.7   and =0.34

(b) time series of =0.7   and =0.34

(c) =0.7   and =0.53

(d) time series of =0.7   and =0.53

(e) =0.7   and =0.82

(f) =0.7   and =0.84

Fig. 5. Phase portraits (a) for =0.34, (c) for =0.53, (e) for 

=0.82, and (f) for =0.84. Time history curves (b) for 

=0.34 and (d) for =0.53.

Fig. 6. Bifurcation diagram obtained by varying   from 0.1 to 

1.6 for =1.0  .
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Fig. 7. Phase portraits (a) for =1.0   and =0.6.

4. Conclusions

  In this study, the nonlinear dynamical behaviors of a two-point 

mooring system have been extensively investigated using the 

numerical analysis. Particularly, the bifurcation techniques are 

applied to analyze the dynamical vessel motions for varying 

excitation amplitude as well as angular frequency, modelled as a 

single degree of freedom (surge). 

1) The vessel system exhibits complex dynamical behaviors such 

as periodic and chaotic responses. Stable periodic solutions, called 

the periodic windows, can be observed in succession between 

chaotic motion clouds of dots in case of     . 

2) Chaotic region is unexpectedly increased when external forcing 

amplitude exceeds 1.0 in case of     . Compared to 

the angular velocity for      and   , the 

region of chaotic behavior becomes more fragile when   

 .

3) Various types of steady states including sub-harmonic motion 

and symmetry breaking phenomenon are obtained at each of 

parameter values. 

  The test results are extremely helpful for understanding of 

nonlinear stability and bifurcation mechanism in mooring system. 

Finally, further research will be made to consider the mooring 

control synthesis for safety vessel operations.
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