DOI QR코드

DOI QR Code

Extensive investigations of photon interaction properties for ZnxTe100- x alloys

  • Singh, Harinder (Department of Nanotechnology, Sri Guru Granth Sahib World University) ;
  • Sharma, Jeewan (Department of Nanotechnology, Sri Guru Granth Sahib World University) ;
  • Singh, Tejbir (Department of Physics, Sri Guru Granth Sahib World University)
  • 투고 : 2018.06.08
  • 심사 : 2018.08.02
  • 발행 : 2018.12.25

초록

An extensive investigation of photon interaction properties has been made for $Zn_xTe_{100-x}$ alloys (where x = 5, 20, 30, 40, 50) to explore its possible use in sensing and shielding gamma radiations. The results show better and stable response of ZnTe alloys for various photon interaction properties over the wide energy range, with an additional benefit of ease in fabrication due to lower melting points of Zn and Te. Mass attenuation coefficient values show strong dependence on photon energy as well as composition. Effective atomic number has maximum value for $Zn_5Te_{95}$ and lowest for $Zn_{50}Te_{50}$ in the entire energy region. The alloy sample with maximum $Z_{eff}$ shows minimal value of $N_e$ and vice versa. Mean free path follows inverse trend as observed for mass attenuation coefficient. The exposure and energy absorption buildup factors depend upon photon energy, penetration thickness and composition (effective atomic number) of $Zn_xTe_{100-x}$ alloys. It finds its application for sensing and shielding from highly energetic and highly penetrating photons at sites where radioactive materials were used and visibility of material is not a big constraint. Further, energy down conversion property of ZnTe alloys with subsequent emission in green band suggests its potential use in sensing gamma photons.

키워드

참고문헌

  1. B.O. El-bashir, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Comprehensive study on physical, elastic and shielding properties of ternary $BaO-Bi_2O_3-P_2O_5$ glasses as a potent radiation shielding material, J. Non-Cryst. Solids 468 (2017) 92-99. https://doi.org/10.1016/j.jnoncrysol.2017.04.031
  2. M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions, J. Alloy. Comp. 695 (2017) 3191-3197. https://doi.org/10.1016/j.jallcom.2016.11.318
  3. S. Kaur, A. Kaur, P.S. Singh, T. Singh, Scope of Pb-Sn binary alloys as gamma rays shielding material, Prog. Nucl. Energy 93 (2016) 277-286. https://doi.org/10.1016/j.pnucene.2016.08.022
  4. T. Kaur, J. Sharma, T. Singh, Thickness optimization of SnePb alloys for experimentally measuring mass attenuation coefficients, Nucl. Energy Tech. 3 (2017) 1-5. https://doi.org/10.1016/j.nucet.2017.02.001
  5. A.M.A. Mostafa, S.A.M. Issa, M.I. Sayyed, Gamma ray shielding properties of $PbO-B_2O_3-P_2O_5$ doped with $WO_3$, J. Alloy. Comp. 708 (2017) 294-300. https://doi.org/10.1016/j.jallcom.2017.02.303
  6. M.C. Ersundu, A.E. Ersundu, M.I. Sayyed, G. Lakshminarayana, S. Aydin, Evaluation of physical, structural properties and shielding parameters for $K_2O-WO_3-TeO_2$ glasses for gamma ray shielding applications, J. Alloy. Comp. 714 (2017) 278-286. https://doi.org/10.1016/j.jallcom.2017.04.223
  7. M. Dong, B.O. El-bashir, M.I. Sayyed, Enhancement of gamma ray shielding properties by PbO partial replacement of $WO_3$ in ternary $60TeO_2$-(40-x) $WO_3$-xPbO glass system, Chalcogenide Lett. 13 (2017) 113-118.
  8. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, Gamma ray shielding properties of $TeO_2-ZnF_2-As_2O_3-Sm_2O_3$ glasses, J. Alloy. Comp. 765 (2018) 451-458. https://doi.org/10.1016/j.jallcom.2018.06.240
  9. M.I. Sayyed, H.O. Tekin, E.E. Altunsoy, S.S. Obaid, M. Almatari, Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code, J. Non-Cryst. Solids 498 (2018) 167-172. https://doi.org/10.1016/j.jnoncrysol.2018.06.022
  10. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloy. Comp. 688 (2016) 111-117. https://doi.org/10.1016/j.jallcom.2016.07.153
  11. M.I. Sayyed, S.I. Quashu, Z.Y. Khattari, Radiation shielding competence of newly developed $TeO_2-WO_3$ glasses, J. Alloy. Comp. 696 (2017) 632-638. https://doi.org/10.1016/j.jallcom.2016.11.160
  12. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometrical progression formula in approximating gamma ray buildup factors, Nucl. Sci. Eng. 94 (1986) 24-35. https://doi.org/10.13182/NSE86-A17113
  13. C. Suteau, M. Chiron, An iterative method for calculating gamma ray buildup factors in multi-layer shields, Radiat. Protect. Dosim. 116 (2005) 489-492. https://doi.org/10.1093/rpd/nci192
  14. D. Sardari, A. Abbaspour, S. Baradaran, F. Babapour, Estimation of gamma and X- Ray photons buildup factor in soft tissue with Monte Carlo Method, Appl. Radiat. Isot. 67 (2009) 1438-1440. https://doi.org/10.1016/j.apradiso.2009.02.033
  15. A. Shimizu, T. Onda, Y. Sakamato, Calculation of gamma ray buildup factors up to depths of 100 mfp by the method of invariant embedding, (III) generation of an improved data set, J. Nucl. Sci. Technol. 41 (2004) 413-424. https://doi.org/10.1080/18811248.2004.9715503
  16. A. Shimizu, Calculation of gamma-ray buildup factors up to depths of 100mfp by the method of invariant embedding, (I) Analysis of accuracy and comparison with other data, J. Nucl. Sci. Technol. 39 (2002) 477-486.
  17. Y. Harima, A historical review and current status of buildup factor calculations and application, Radiat. Phys. Chem. 41 (1993) 631-672. https://doi.org/10.1016/0969-806X(93)90317-N
  18. ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society, La Grange Park, IL, USA, 1991.
  19. H. Singh, P. Singh, A. Thakur, T. Singh, J. Sharma, Nanocrystalline $ZnxTe_{100-x}$ (x - 0, 5, 20, 30, 40, 50) thin films: structural, optical and electrical properties, Mater. Sci. Semicond. Process. 75 (2018) 276-282. https://doi.org/10.1016/j.mssp.2017.12.002
  20. H. Singh, T. Singh, A. Thakur, J. Sharma, Optical parameters of nanocrystalline $Zn_{40}Te_{60}$ thin films, Int. J. Adv. Res. Sci. Eng. 7 (2018) 214-219.
  21. H. Singh, N. Duklan, T. Singh, A. Thakur, J. Sharma, Effect of vacuum annealing on structural and optical properties of nanocrystalline ZnTe thin films, J. Mater. Sci. Mater. Electron. 29 (2018) 4992-4998. https://doi.org/10.1007/s10854-017-8460-7
  22. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  23. T. Singh, P. Kaur, P.S. Singh, A study of photon interaction parameters in some commonly used solvents, J. Radiol. Prot. 27 (2007) 79-85. https://doi.org/10.1088/0952-4746/27/1/005
  24. R. Sharma, V. Sharma, P.S. Singh, T. Singh, Effective atomic numbers for some calciumestrontium-borate glasses, Ann. Nucl. Energy 45 (2012) 144-149. https://doi.org/10.1016/j.anucene.2012.03.005
  25. W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, B. Zou, Structure and photoluminescence of pure and indium doped ZnTe microstructures, J. Phys. Chem. C 115 (2011) 1415-1421. https://doi.org/10.1021/jp1069237
  26. J. Guo, J. Xu, X. Zhuang, Y. Wang, H. Zhou, Z. Shan, P. Ren, P. Guo, Q. Zhang, Q. Wan, X. Zhu, A. Pan, Large photoluminescence redshift of ZnTe nanostructures: the effect of twin structure, Chem. Phys. Lett. 576 (2013) 26-30. https://doi.org/10.1016/j.cplett.2013.05.013

피인용 문헌

  1. Establishing correlation among optical, electrical and photon interaction parameters for ZnxTe100−x (x = 5, 20, 30, 40, 50) alloys vol.6, pp.6, 2019, https://doi.org/10.1088/2053-1591/ab0b0b
  2. Gamma radiation shielding properties of some Bi-Sn-Zn alloys vol.40, pp.1, 2018, https://doi.org/10.1088/1361-6498/ab6aaf
  3. Fabrication and characterization of barium based bioactive glasses in terms of physical, structural, mechanical and radiation shielding properties vol.47, pp.15, 2018, https://doi.org/10.1016/j.ceramint.2021.04.188
  4. Neutron/gamma radiation shielding characteristics and physical properties of (97.3−x)Pb−xCd-2.7Ag alloys for nuclear radiation applications vol.96, pp.12, 2018, https://doi.org/10.1088/1402-4896/ac3d4a
  5. Effects of WO3 on Radiation Shielding Properties of WO3-TeO2 Binary Tellurite Glass System vol.222, pp.1, 2018, https://doi.org/10.1080/10584587.2021.1961522