DOI QR코드

DOI QR Code

고성능 폴리머 재질의 포스트-코어 시스템의 생역학적 거동에 대한 예비실험

A Preliminary study of Biomechanical Behavior of High-Performance Polymer Post-Core System

  • 이기선 (고려대학교 안산병원 치과-보철과) ;
  • 김종은 (연세대학교 치과병원 보철과) ;
  • 김지환 (연세대학교 치과병원 보철과) ;
  • 이정열 (고려대학교 구로병원 치과-보철과) ;
  • 신상완 (고려대학교 의료원)
  • Lee, Ki-Sun (Department of Prosthodontics, Korea University Ansan Hospital) ;
  • Kim, Jong-Eun (Department of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Jee-Hwan (Department of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Lee, Jeong-Yol (Department of Prosthodontics, Korea University Guro Hospital) ;
  • Shin, Sang-Wan (Korea University Medical Center)
  • 투고 : 2018.08.28
  • 심사 : 2018.11.05
  • 발행 : 2018.12.17

초록

본 연구의 목적은 기존의 다른 포스트-코어 재료와의 유한요소분석(FEA)의 비교를 통한 치과용 포스트-코어 재료로서의 고성능 폴리머 PEKK의 생체역학 및 장기 안전성을 평가하는 데 있다. 상악 중절치를 모델링 하였으며, 구개 표면에서 치아의 장축에 $45^{\circ}$의 각도로 50N의 반복 하중을 가했다. 전통적으로 사용 된 포스트 코어 재료와 비교하기 위해 3가지 재료 (금, 유리 섬유 및 PEKK)를 시뮬레이션하여 결과를 상호 비교 해 보았다. 상아질보다 낮은 탄성 계수를 갖는 PEKK는 종래의 포스트 코어 재료보다 비교적 치근에 유리한 응력 분포를 보여 주었다. 그러나, PEKK 포스트-코어 시스템은 금속 또는 유리 섬유 포스트-코어 시스템보다 장기간의 반복하중에 대해 타락 및 크라운 파손의 가능성이 더 높을 가능성이 있다.

The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of $45^{\circ}$ to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

키워드

HSMCB1_2018_v27n2_75_f0001.png 이미지

Fig 1. 포스트-코어시스템을 가지는 치아에 대한 가상 모델링. 좌측은 포스트와 코어가 일체형인 시스템에 대한 모델링. 우측은 포스트와 코어가 일체형이 아닌 시스템에 대한 모델링

HSMCB1_2018_v27n2_75_f0002.png 이미지

Fig 2. 각 실험군의 Maximum von Misses stress 분포 및 결과 비교

Table1. 유한요소 분석에 사용된 재질의 역학적 설정값

HSMCB1_2018_v27n2_75_t0001.png 이미지

참고문헌

  1. R. C. Fraga, B. T. Chaves, G. S. Mello and J. F. Siqueira, Jr., "Fracture resistance of endodontically treated roots after restoration," J Oral Rehabil, vol. 25, no. 11, pp. 809-813, 1998. https://doi.org/10.1046/j.1365-2842.1998.00327.x
  2. B. Akkayan and T. Gulmez, "Resistance to fracture of endodontically treated teeth restored with different post systems," J Prosthet Dent, vol. 87, no. 4, pp. 431-437, 2002. https://doi.org/10.1067/mpr.2002.123227
  3. A. Martinez-Insua, L. da Silva, B. Rilo and U. Santana, "Comparison of the fracture resistances of pulpless teeth restored with a cast post and core or carbon-fiber post with a composite core," J Prosthet Dent, vol. 80, no. 5, pp. 527-532, 1998. https://doi.org/10.1016/S0022-3913(98)70027-7
  4. M. P. Newman, P. Yaman, J. Dennison, M. Rafter and E. Billy, "Fracture resistance of endodontically treated teeth restored with composite posts," J Prosthet Dent, vol. 89, no. 4, pp. 360-367, 2003. https://doi.org/10.1067/mpr.2003.75
  5. D. Okada, H. Miura, C. Suzuki, W. Komada, C. Shin, M. Yamamoto and D. Masuoka, "Stress distribution in roots restored with different types of post systems with composite resin," Dent Mater J, vol. 27, no. 4, pp. 605-611, 2008. https://doi.org/10.4012/dmj.27.605
  6. L. Boschian Pest, S. Guidotti, R. Pietrabissa and M. Gagliani, "Stress distribution in a post-restored tooth using the three-dimensional finite element method," J Oral Rehabil, vol. 33, no. 9, pp. 690-697, 2006. https://doi.org/10.1111/j.1365-2842.2006.01538.x
  7. T. Nakamura, T. Ohyama, T. Waki, S. Kinuta, K. Wakabayashi, Y. Mutobe, N. Takano and H. Yatani, "Stress analysis of endodontically treated anterior teeth restored with different types of post material," Dent Mater J, vol. 25, no. 1, pp. 145-150, 2006. https://doi.org/10.4012/dmj.25.145
  8. R. de Castro Albuquerque, L. T. Polleto, R. H. Fontana and C. A. Cimini, "Stress analysis of an upper central incisor restored with different posts," J Oral Rehabil, vol. 30, no. 9, pp. 936-943, 2003. https://doi.org/10.1046/j.1365-2842.2003.01154.x
  9. N. Adanir and S. Belli, "Stress analysis of a maxillary central incisor restored with different posts," Eur J Dent, vol. 1, no. 2, pp. 67-71, 2007.
  10. F. Maceri, M. Martignoni and G. Vairo, "Mechanical behaviour of endodontic restorations with multiple prefabricated posts: a finite-element approach," J Biomech, vol. 40, no. 11, pp. 2386-2398, 2007. https://doi.org/10.1016/j.jbiomech.2006.11.018
  11. A. Pegoretti, L. Fambri, G. Zappini and M. Bianchetti, "Finite element analysis of a glass fibre reinforced composite endodontic post," Biomaterials, vol. 23, no. 13, pp. 2667-2682, 2002. https://doi.org/10.1016/S0142-9612(01)00407-0
  12. A. Lanza, R. Aversa, S. Rengo, D. Apicella and A. Apicella, "3D FEA of cemented steel, glass and carbon posts in a maxillary incisor," Dent Mater, vol. 21, no. 8, pp. 709-715, 2005. https://doi.org/10.1016/j.dental.2004.09.010
  13. N. Cheleux and P. J. Sharrock, "Mechanical properties of glass fiber-reinforced endodontic posts," Acta Biomater, vol. 5, no. 8, pp. 3224-3230, 2009. https://doi.org/10.1016/j.actbio.2009.04.008
  14. R. L. Sakaguchi and J. M. Powers, Craig's restorative dental materials, Elsevier Health Sciences, 2012.
  15. R. G. Craig and F. A. Peyton, "Elastic and mechanical properties of human dentin," J Dent Res, vol. 37, no. 4, pp. 710-718, 1958. https://doi.org/10.1177/00220345580370041801
  16. B. Stawarczyk, P. Jordan, P. R. Schmidlin, M. Roos, M. Eichberger, W. Gernet and C. Keul, "PEEK surface treatment effects on tensile bond strength to veneering resins," J Prosthet Dent, vol. 112, no. 5, pp. 1278-1288, 2014. https://doi.org/10.1016/j.prosdent.2014.05.014
  17. G. Fuhrmann, M. Steiner, S. Freitag-Wolf and M. Kern, "Resin bonding to three types of polyaryletherketones (PAEKs)-durability and influence of surface conditioning," Dent Mater, vol. 30, no. 3, pp. 357-363, 2014. https://doi.org/10.1016/j.dental.2013.12.008
  18. J. M. Toth, M. Wang, B. T. Estes, J. L. Scifert, H. B. Seim and A. S. Turner, "Polyetheretherketone as a biomaterial for spinal applications," Biomaterials, vol. 27, no. 3, pp. 324-334, 2006. https://doi.org/10.1016/j.biomaterials.2005.07.011
  19. A. Schwitalla and W. D. Muller, "PEEK dental implants: a review of the literature," J Oral Implantol, vol. 39, no. 6, pp. 743-749, 2013. https://doi.org/10.1563/AAID-JOI-D-11-00002
  20. S. M. Kurtz and J. N. Devine, "PEEK biomaterials in trauma, orthopedic, and spinal implants," Biomaterials, vol. 28, no. 32, pp. 4845-4869, 2007. https://doi.org/10.1016/j.biomaterials.2007.07.013
  21. E. D. Tetelman and C. A. Babbush, "A new transitional abutment for immediate aesthetics and function," Implant Dent, vol. 17, no. 1, pp. 51-58, 2008. https://doi.org/10.1097/ID.0b013e318167648c
  22. F. Tannous, M. Steiner, R. Shahin and M. Kern, "Retentive forces and fatigue resistance of thermoplastic resin clasps," Dent Mater, vol. 28, no. 3, pp. 273-278, 2012. https://doi.org/10.1016/j.dental.2011.10.016
  23. P. R. Picanco, F. P. Valarelli, R. H. Cancado, K. M. de Freitas and G. V. Picanco, "Comparison of the changes of alveolar bone thickness in maxillary incisor area in extraction and non-extraction cases: computerized tomography evaluation," Dental Press J Orthod, vol. 18, no. 5, pp. 91-98, 2013. https://doi.org/10.1590/S2176-94512013000500016
  24. I. Nergiz, P. Schmage, M. Ozcan and U. Platzer, "Effect of length and diameter of tapered posts on the retention," J Oral Rehabil, vol. 29, no. 1, pp. 28-34, 2002. https://doi.org/10.1046/j.1365-2842.2002.00806.x
  25. P. J. Rodriguez-Cervantes, J. L. Sancho-Bru, C. Gonzalez-Lluch, A. Perez-Gonzalez, A. Barjau-Escribano and L. Forner-Navarro, "Premolars restored with posts of different materials: fatigue analysis," Dent Mater J, vol. 30, no. 6, pp. 881-886, 2011. https://doi.org/10.4012/dmj.2011-098
  26. Y.-L. Lee, Fatigue testing and analysis: theory and practice, Butterworth-Heinemann, 2005.
  27. I. Krejci, E. Mueller and F. Lutz, "Effects of thermocycling and occlusal force on adhesive composite crowns," Journal of dental research, vol. 73, no. 6, pp. 1228-1232, 1994. https://doi.org/10.1177/00220345940730061501