DOI QR코드

DOI QR Code

Field Survey on Smart Greenhouse

스마트 온실의 현장조사 분석

  • Lee, Jong Goo (Dept. of Agricultural Eng., Gyeongsang National Univ.(Institute of Agriculture and Life Science, GNU)) ;
  • Jeong, Young Kyun (Dept. of Agricultural Eng., Gyeongsang National Univ.(Institute of Agriculture and Life Science, GNU)) ;
  • Yun, Sung Wook (Dept. of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Choi, Man Kwon (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Kim, Hyeon Tae (Dept. of Bio-Industrial Machinery Eng.. Gyeongsang National Univ. (Institute of Agriculture & Life Science)) ;
  • Yoon, Yong Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ.(Institute of Agriculture and Life Science, GNU))
  • 이종구 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 정영균 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 윤성욱 (농촌진흥청 농업공학부 에너지환경공학과) ;
  • 최만권 (국립원예 특작 과학원 시설원예 연구소) ;
  • 김현태 (경상대학교 생물산업기계공학과(농업생명과학연구원)) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2018.04.11
  • Accepted : 2018.04.27
  • Published : 2018.04.30

Abstract

This study set out to conduct a field survey with smart greenhouse-based farms in seven types to figure out the actual state of smart greenhouses distributed across the nation before selecting a system to implement an optimal greenhouse environment and doing a research on higher productivity based on data related to crop growth, development, and environment. The findings show that the farms were close to an intelligent or advanced smart farm, given the main purposes of leading cases across the smart farm types found in the field. As for the age of farmers, those who were in their forties and sixties accounted for the biggest percentage, but those who were in their fifties or younger ran 21 farms that accounted for approximately 70.0%. The biggest number of farmers had a cultivation career of ten years or less. As for the greenhouse type, the 1-2W type accounted for 50.0%, and the multispan type accounted for 80.0% at 24 farms. As for crops they cultivated, only three farms cultivated flowers with the remaining farms growing only fruit vegetables, of which the tomato and paprika accounted for approximately 63.6%. As for control systems, approximately 77.4% (24 farms) used a domestic control system. As for the control method of a control system, three farms regulated temperature and humidity only with a control panel with the remaining farms adopting a digital control method to combine a panel with a computer. There were total nine environmental factors to measure and control including temperature. While all the surveyed farms measured temperature, the number of farms installing a ventilation or air flow fan or measuring the concentration of carbon dioxide was relatively small. As for a heating system, 46.7% of the farms used an electric boiler. In addition, hot water boilers, heat pumps, and lamp oil boilers were used. As for investment into a control system, there was a difference in the investment scale among the farms from 10 million won to 100 million won. As for difficulties with greenhouse management, the farmers complained about difficulties with using a smart phone and digital control system due to their old age and the utter absence of education and materials about smart greenhouse management. Those difficulties were followed by high fees paid to a consultant and system malfunction in the order.

본 연구에서는 우선, 농작물의 생육 및 환경관련 데이터를 활용하여 온실의 최적 환경 구현을 위한 시스템을 선정하고 생산성 향상에 대한 연구에 앞서 현재 국내에 보급되어 있는 스마트 온실의 실태를 파악하기 위하여 7가지의 유형별 스마트 온실 농가를 대상으로 현장조사를 실시하였다. 그 결과 현장에서 전하는 유형별 스마트 팜 선도 사례의 주목적을 보면, 지능형이나 첨단형 정도가 스마트 팜에 가까운 것으로 판단되었다. 연령대를 보면, 상대적으로 40대 및 60대가 가장 많았지만, 50대 이하가 21개 농가로서 전체의 약 70.0%정도를 차지하였고, 재배경력은 10년 이하가 가장 많았다. 온실의 형태로는 1-2W형이 전체의 50.0%정도이고, 연동형이 전체의 80.0%정도로서 24개 농가였다. 재배작물의 경우, 화훼류는 3개 농가뿐이고, 나머지 농가는 채소류 중에서도 과채류만 재배하는 것으로 나타났다. 과채류 중에서도 상대적으로 토마토와 파프리카가 전체 중에 약 63.6%를 차지하였다. 제어시스템은 약 77.4%정도인 24개 농가가 국산제품을 사용하고 있었다. 제어시스템의 제어방식의 경우, 3개 농가는 제어패널만을 사용하여 온습도 등을 조절하였고 나머지 농가는 패널과 컴퓨터에 의한 디지털 제어방식이었다. 디지털 제어의 경우, 휴대폰을 통한 애플리케이션으로 원격조절도 가능하게 설계되어 있고, 대부분 농가에 CCTV도 설치되어 있었다. 계측 및 조절 대상 환경인자는 온도를 포함하여 9개 정도이며, 온도는 전체 조사대상 농가가 계측하고 있었지만, 환기 및 공기유동 팬이나 탄산가스 농도 등의 경우는 다른 인자에 비해 상대적으로 낮았다. 난방시스템의 경우, 대상 농가 중에 46.7%가 전기보일러를 사용하는 것으로 조사되었다. 이 외에도 온수보일러, 히트펌프 및 등유보일러 등으로 나타났다. 제어시스템에 투자한 규모의 경우, 1,000만 원에서 1억원까지로 투자규모가 농가마다 다르게 나타났다.

Keywords

References

  1. Baek, M.R. 2013. A study on greenhouse management framework for optimal control of intelligent greenhouse. MS Thesis. Sunchon National Univ. p. 1-39 (in Korean).
  2. Cha, B.R., M.S. Choi, B.K. Kim, O.S. Cheon, T.H. Han, J.W. Kim, and S. Park. 2016. Rearch of next generation IoFCloud based snart greenhouse & services. Smart Media J. 5(3): 17-24 (in Korean).
  3. Choi, M.K., S.W. Yun, I.H. Yu, S.Y. Lee, and Y.C. Yoonk. 2015. Settlement instrumentation of greenhouse foundation in recaimed land. Protected Hort. Plant Fac. 24(2): 85-92 (in Korean). https://doi.org/10.12791/KSBEC.2015.24.2.085
  4. Hwang, D.H., J.H. Lee, J.H. Kim, and W.I. Kim. 2010. Rearch of smart farm system for low carbon-green industry. Korea Entertainment Industry Association. 4(2): 46-51 (in Korean).
  5. Knowledge Industry Information Institute(KNIN). 2017. Technical development trend of domestic foreign in smart agriculture and next generation plant factory/R&D strategy of livestock field. Press release. 2018. http//www.marfa.go.kr (in Korean).
  6. Korea Rural Economic Institute (KREI). 2016. Study on the current status analysis of smart farm and developmental direction. ed. Ministry of Agriculture, Food and Rural Affairs. p. 18 (in Korean).
  7. Lee, H.L., S.H. Yang, J.H. Lee, T.B. Chae, and J.H. Kim. 2016. The rearch of user enviornment for smart greenhouse. Proceedings of the J. Bio. Eng. 2016 Autumn Annual Conference. 186 (in Korean).
  8. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2017a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2016. Press release. 2018. http//www.marfa.go.kr (in Korean).
  9. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2017b. Cultivation status of floricultural crop in 2016. Press release. 2018. http//www.marfa.go.kr (in Korean).
  10. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2017. Agriculture, Food and Rural Affairs Major Statistics. Press release. 2018. http//www.marfa.go.kr (in Korean).
  11. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2016. AGRICULTURE, FOOD AND RURAL AFFAIRS MAJOR STATISTICS. Press release. 2018. http//www.marfa.go.kr (in Korean).
  12. Ministry of Agriculture, Food and Rural Affairs (MAFRA), Rural Development Adminstration (RDA) and Korea Agency of Education, Promotion & Information Service in Food, Agriculture, Forestry & Fisheries (EPIS). 2017. Leading case according to types of smart farm told in agriculture field. Press release. 2018. http//www.marfa.go.kr (in Korean).
  13. Yeo, U.H., I.B Lee, K.S. Kwon, T.H. Ha, S.J Park, R.W. Kim, and S.Y. Lee. 2016. Analysis of research trend and core technologies based on ICT to materialize smart farm. Protected Hort. Plant Fac. 25: 30-41 (in Korean). https://doi.org/10.12791/KSBEC.2016.25.1.30