DOI QR코드

DOI QR Code

광도, CO2 농도 및 정식 후 생육시기에 따른 식물공장 재배 상추의 군락 광합성 모델 확립

Development and Validation of a Canopy Photosynthetic Rate Model of Lettuce Using Light Intensity, CO2 Concentration, and Day after Transplanting in a Plant Factory

  • 정대호 (서울대학교 식물생산과학부) ;
  • 김태영 (서울대학교 식물생산과학부) ;
  • 조영열 (제주대학교 원예환경전공) ;
  • 손정익 (서울대학교 식물생산과학부)
  • Jung, Dae Ho (Department of Plant Science, Seoul National University) ;
  • Kim, Tae Young (Department of Plant Science, Seoul National University) ;
  • Cho, Young-Yeol (Major of Horticultural Science, Jeju National University) ;
  • Son, Jung Eek (Department of Plant Science, Seoul National University)
  • 투고 : 2018.02.27
  • 심사 : 2018.04.02
  • 발행 : 2018.04.30

초록

작물의 생산량은 광합성과 밀접한 관계가 있으며, 광합성 속도는 다양한 환경 요인에 의해 변화한다. 광합성 속도는 작물의 생육 상태나 생육 속도를 판단하는 지표로 사용되며, 작물 재배 시설을 구축하는 데 고려해야 하는 중요한 요인이다. 이 연구의 목적은 광도, $CO_2$ 농도 및 생육 단계에 의해 변화하는 로메인 상추의 군락 광합성 속도 모델을 개발하는 것이다. 군락 광합성 속도는 정식 후 5, 10, 15, 20 일차에서 5단계의 $CO_2$ 농도($600-2,200{\mu}mol{\cdot}mol^{-1}$)와 5단계의 광조건($60-340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)이 처리된 3개의 밀폐 아크릴 챔버($1.0{\times}0.8{\times}0.5m$) 내에서 측정하였다. 먼저 세 가지 환경 요인을 사용하는 식들을 곱하여 만든 단순곱 모델을 구성하였다. 이와 동시에 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과, 단순곱 모델의 $R^2$는 0.923이었으며, 수정 직각쌍곡선 모델의 $R^2$는 0.941을 나타내었다. 따라서 수정 직각쌍곡선 모델이 광도, $CO_2$ 농도, 생육 단계의 3 변수에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 것으로 판단하였다. 본 연구에서 개발된 군락 광합성 모델은 식물공장에서 상추 재배를 위해 생육 단계별로 설정해야 할 최적의 광도와 $CO_2$ 농도를 결정하는 데 도움이 될 것으로 생각된다.

The photosynthetic rate is an indicator of the growth state and growth rate of crops and is an important factor in constructing efficient production systems. The objective of this study was to develop a canopy photosynthetic rate model of romaine lettuce using the three variables of $CO_2$ concentration, light intensity, and growth stage. The canopy photosynthetic rates of the lettuce were measured at five different $CO_2$ concentrations ($600-2,200{\mu}mol{\cdot}mol^{-1}$), five light intensities ($60-340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), and four growth stages (5-20 days after transplanting) in three closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$). A simple multiplication model expressed by multiplying three single-variable models and the modified rectangular hyperbola model including photochemical efficiency, carboxylation conductance, and dark respiration, which vary with growth stage, were also considered. In validation, the $R^2$ value was 0.923 in the simple multiplication model, while it was 0.941 in the modified rectangular hyperbola model. The modified rectangular hyperbola model appeared to be more appropriate than the simple multiplication model in expressing canopy photosynthetic rates. The model developed in this study will contribute to the determination of an optimal $CO_2$ concentration and light intensity with the growth stage of lettuce in plant factories.

키워드

참고문헌

  1. Acock, B.C., J.H.M. Thornley, and J.W. Wilson. 1971. Photosynthesis and energy conversion. In: Wareing P.F., Cooper, J.P. (Eds.), Potential crop production. Heinemmann Educational Publishers, London, United Kingdom. pp. 43-75.
  2. Acock, B.C. and L.H. Allen Jr. 1985. Crop responses to elevated carbon dioxide concentrations. In: Strain, B.R., and J.D. Cure. (Eds.), Direct effects of increasing carbon dioxide on vegetation. US Department of Energy, Office of Energy Research, Office of Basic Energy Sciences, Carbon Dioxide Research Division. pp. 53-99.
  3. Campbell, W.J., L.H. Allen, and G. Bowes. 1990. Response of soybean canopy photosynthesis to $CO_2$ concentration, light, and temperature. J. Exp. Bot. 41: 427-433. https://doi.org/10.1093/jxb/41.4.427
  4. Caporn, S.J.M. 1989. The effects of oxides of nitrogen and carbon dioxide enrichment on photosynthesis and growth of lettuce (Lactuca sativa L.). New Phytol. 111: 473-481. https://doi.org/10.1111/j.1469-8137.1989.tb00710.x
  5. Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149: 78-90. https://doi.org/10.1007/BF00386231
  6. Gaudreau, L., J. Charbonneau, L.P. Vezina, and A. Gosselin. 1995. Effects of photoperiod and photosynthetic photon flux on nitrate content and nitrate reductase activity in greenhouse-grown lettuce. J. Plant Nutr. 18: 437-453. https://doi.org/10.1080/01904169509364914
  7. Goudriaan, J., H.H. van Laar, H. van Keulen, and W. Louwerse. 1985. Photosynthesis, $CO_2$ and plant production. In: Day, W., and R.K. Arkin. (Eds.), Wheat growth and modeling, vol. 86 (NATO ASI Series A). Plenum Press, New York. pp. 107-122.
  8. Green, C.F. 1987. Nitrogen nutrition and wheat growth in relation to absorbed solar radiation. Agric. Forest Meteorol. 41: 207-248. https://doi.org/10.1016/0168-1923(87)90080-3
  9. Hikosaka, K., T.O. Kumagai and A. Ito. 2016. Modeling canopy photosynthesis. In: Canopy Photosynthesis: From basics to applications, Springer. pp. 239-268.
  10. Inada, K. and Y. Yasumoto. 1989. Effects of light quality, day length and periodic temperature variation on the growth of lettuce and radish plants. Jpn. J. Crop Sci. 58: 689-694. https://doi.org/10.1626/jcs.58.689
  11. Jung, D.H., D. Kim, H.I. Yoon, T.W. Moon, K.S. Park, and J.E. Son. 2016. Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying $CO_2$ concentrations and growth stages. Hortic. Environ. Biotechnol. 57: 487-492. https://doi.org/10.1007/s13580-016-0103-z
  12. Jung, D.H., H.I. Yoon, and J.E. Son. 2017. Development of a three-variable canopy photosynthetic rate model of romaine lettuce (Lactuca sativa L.) grown in plant factory modules using light intensity, temperature, and growth stage. Protect. Hortic. Plant Fact. 26: 268-275. https://doi.org/10.12791/KSBEC.2017.26.4.268
  13. Kaitala, V., P. Hari, E. Vapaavuori, and R. Salminen. 1982. A dynamic model for photosynthesis. Ann. Bot. 50: 385-396. https://doi.org/10.1093/oxfordjournals.aob.a086378
  14. Kim, J.H., J.W. Lee, T.I. Ahn, J.H. Shin. K.S. Park, and J.E. Son. 2016. Sweet pepper (Capsicum annuum L.) canopy photosynthesis modeling using 3D plant architecture and light ray-tracing. Front. Plant Sci. 7: 1321.
  15. Kim, S.H., J.H. Jeong, and L.L. Nackley. 2013. Photosynthetic and transpiration responses to light, $CO_2$, temperature, and leaf senescence in garlic: Analysis and modeling. HortScience 138: 149-156.
  16. Kim, W.S. and J.H. Lieth. 2012. Simulation of year-round plant growth and nutrient uptake in Rosa hybrida over flowering cycles. Hortic. Environ. Biotechnol. 53: 193-203. https://doi.org/10.1007/s13580-012-0054-y
  17. Kozai, T. 2013. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proc. Jpn. Acad., Ser. B 89: 447-461. https://doi.org/10.2183/pjab.89.447
  18. Leadley, P.W., J.F. Reynolds, R. Flagler, and A.S. Heagle. 1990. Radiation utilization efficiency and the growth of soybeans exposed to ozone: a comparative analysis. Agric. Forest Meteorol. 51: 293-308. https://doi.org/10.1016/0168-1923(90)90114-L
  19. Li, J., Z. Zou, and X. Wang. 2009. Effect of muskmelon leaf age on photosynthesis rate and other physiological parameters at different light density. Acta Hortic. 893: 785-790.
  20. Li, K., Z. Li, and Q. Yang. 2016. Improving light distribution by zoom lens for electricity savings in a plant factory with light-emitting diodes. Front. Plant Sci. 7: 92.
  21. Lin, W.C. 2001. Crop modelling and yield prediction for greenhouse-grown lettuce. In: IV International symposium on models for plant growth and control in greenhouses: modeling for the 21st century -agronomic and greenhouse crop models. pp. 159-164.
  22. Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43: 1951-1956.
  23. Mills, E. 2012. The carbon footprint of indoor cannabis production. Energy Policy 46: 58-67. https://doi.org/10.1016/j.enpol.2012.03.023
  24. Mokhtarpour, H., C.B. Teh, G. Saleh, A.B. Selamat, M.E. Asadi, and B. Kamkar. 2010. Non-destructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Commun. Biometry Crop Sci. 5: 19-26.
  25. Monsi, M. 1960. Dry-matter reproduction in plants 1. Schemata of dry-matter reproduction. Bot. Mag. 861: 81-90.
  26. Niinemets, U. 2016. Leaf age dependent changes in withincanopy variation in leaf functional traits: a meta-analysis. J. Plant Res. 129: 313-338. https://doi.org/10.1007/s10265-016-0815-2
  27. Olesen, J.E. and K. Grevsen. 1997. Effects of temperature and irradiance on vegetative growth of cauliflower (Brassica oleracea L. botrytis) and broccoli (Brassica oleracea L. italica). J. Exp. Bot. 48: 1591-1598. https://doi.org/10.1093/jxb/48.8.1591
  28. Pavlou, G.C., C.D. Ehaliotis, and V.A. Kavvadias. 2007. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci. Hortic. 111: 319-325. https://doi.org/10.1016/j.scienta.2006.11.003
  29. Perez-Pena, J. and J. Tarara. 2015. A portable whole canopy gas exchange system for several mature field-grown grapevines. VITIS - J. Grapevine Res. 43: 1-7.
  30. Shimizu, H., M. Kushida, and W. Fujinuma. 2008. A growth model for leaf lettuce under greenhouse environments. Environ. Cont. Biol. 46: 211-219. https://doi.org/10.2525/ecb.46.211
  31. Takahashi, N., P.P. Ling, and J.M. Frantz. 2008. Considerations for accurate whole plant photosynthesis measurement. Environ. Cont. Biol. 46: 91-101. https://doi.org/10.2525/ecb.46.91
  32. Thornley, J.H.M. 1974. Light fluctuations and photosynthesis. Ann. Bot. 38: 363-373. https://doi.org/10.1093/oxfordjournals.aob.a084820
  33. Thornley, J.H.M. 1976. Mathematical models in plant physiology: A quantitative approach to problems in plant and crop physiology. Academic Press, London. p. 318.