DOI QR코드

DOI QR Code

Effect of Using Burn-type CO2 Generators When Cultivation Strawberry in a Greenhouse

딸기재배 시 연소식 탄산가스 발생기 이용 효과 구명

  • 이재한 (국립원예특작과학원 시설원예연구소) ;
  • 이중섭 (국립원예특작과학원 시설원예연구소) ;
  • 박경섭 (국립원예특작과학원 시설원예연구소) ;
  • 권준국 (국립원예특작과학원 시설원예연구소) ;
  • 김진현 (국립원예특작과학원 시설원예연구소) ;
  • 이동수 (국립원예특작과학원 시설원예연구소) ;
  • 여경환 (국립원예특작과학원 시설원예연구소)
  • Received : 2017.12.18
  • Accepted : 2018.04.02
  • Published : 2018.04.30

Abstract

This study were carried out to evaluate the efficiency of using burn-type $CO_2$ generators in greenhouse for cultivation 'Seolhyang' strawberry ($Fragaria{\times}ananassa\;Duch.$) during winter season. The concentration of $CO_2$ was 200 to $600{\mu}mol{\cdot}mol^{-1}$ in the control, and 800 to $1,100{\mu}mol{\cdot}mol^{-1}$ in using burn-type $CO_2$ generator between 6 and 11 hours. At other times, it was observed that at similar concentration in the control and using burn-type $CO_2$ generator. Measured greenhouse air temperature inside the of using burn-type $CO_2$ generator was $2{\sim}3^{\circ}C$ higher than the control at 6 ~ 10 am. There was no temperature difference between treatments after 11 o'clock. Plant height, leaf length, leaf width, root diameter, fresh weight, and dry weight were not different between treatments. The marketable yield (kg/10a) of using burn-type generator were 4,131 kg, which was 519 kg higher than the control. Therefore, the total fruit yields increased 17% compared to the control.

본 연구는 저온기 시설 딸기재배에서 연소식 탄산가스 발생기를 이용한 재배효과를 구명하기 위하여 수행하였다. 시설내부 일중 탄산가스 농도는 6시에서 11시 사이에 대조구가 $210{\sim}600{\mu}mol{\cdot}mol^{-1}$ 이었고, 탄산가스 시용구는 $800{\sim}1,100{\mu}mol{\cdot}mol^{-1}$ 이었다. 그 외 시각에서는 대조구와 유사한 분포를 나타내었다. 온실내 온도는 연소방식 탄산가스 시용구는 오전 6시 ~ 10시 대조구에 비해서 $1{\sim}3^{\circ}C$ 높았다. 11시 이후에는 대조구와 차이가 없었다. 초장, 엽장, 엽폭, 관부직경, 생체중, 건물중 등 생육은 처리 간 차이가 없었다. 상품수량은 대조구 3,612kg에 비해서 탄산가스 공급하는 것이 4,131kg으로 519kg 더 무거웠으며 탄산가스 발생기에서 총수량이 대조구에 비해서 17%가 증수 되었다.

Keywords

References

  1. Arp, W.J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated $CO_2$. Plant, Cell and Environment 14:869-875. https://doi.org/10.1111/j.1365-3040.1991.tb01450.x
  2. Barradas, V.L., H.G. Jones, and J.A. Clark. 1994. Stomatal responses to changing irradiance in Phaseolus vulgaris. J. Expt. Bot. 45:931-936. https://doi.org/10.1093/jxb/45.7.931
  3. Behboudian, M.H. and R. Lar. 1994. Carbon dioxide enrichment in 'Virosa' tomato plant : responses to enrichment duration and to temperature. Hort Science 29:1456-1459.
  4. Cure, J.D. 1986. Crop responses to carbon dioxide doubling : a literature survey. Agricultural and Forest Meteorology 38:127-145. https://doi.org/10.1016/0168-1923(86)90054-7
  5. Farrar, J., C. Pollock, and J. Gallagher. 2000. Sucrose and the integration of metabolism in vascular plants. Plant Science 154:1-11. https://doi.org/10.1016/S0168-9452(99)00260-5
  6. Fierro, A., N. Tremblay, and A. Gosselin. 1994. Supplemental carbon dioxide and light improved tomato and pepper seeding growth and yield. Hort Science 29(3):152-154.
  7. Hennessey, L.T. and C.B. Field, 1991. Circadian rhythms in photosynthesis. Plant Physiol. 96:831-836. https://doi.org/10.1104/pp.96.3.831
  8. Islam, S., T. Matsui, and Y. Yoshida. 1996. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Scientia Horticulturae 65:137-149. https://doi.org/10.1016/0304-4238(95)00867-5
  9. Klimstra, J. 1998. Exhaust Treatment for $CO_2$ fertilization with reciprocation gas engines. International Gas Research conference 391-403.
  10. Mitchell, R.A.C., J.C. Theobald, M.A.J. Parry, and D.W. Lawlor. 2000. Is there scope for improving balance between RuBP-regeneration and carboxylation capacities in wheat at elevated $CO_2$. Journal of Experimental Botany 51:391-397. https://doi.org/10.1093/jexbot/51.suppl_1.391
  11. Nederlandse Gasunie, N.V., M. Bekker, K. Hoving, and J. Klimstra. 1999. Increase in crop yields in greenhouse due to the combined heat and power using natural gas. New energy and industrial technology development organization abroad reports No. 816.
  12. Nederhoff, E.M., A.A. Rijsdijk, and R. Graaf. 1992. Leaf conductance and rate of crop transpiration of greenhouse grown sweet pepper (Capsicum annuum L.) as affected by carbon dioxide. Scientia Horticulturae 52:283-301. https://doi.org/10.1016/0304-4238(92)90030-G
  13. Nelson, P.V. 1992. Greenhouse operation and management. 5th ed. Prentice Hall, Upper Saddle River, NJ, USA. p. 375-376.
  14. Park, J.S., J. W. Shin., T.I. Ahn, and J. E. Son. 2010. Analysis of $CO_2$ and harmful gases caused by using burn-type $CO_2$ generators in greenhouses. Journal of Bio-Environment Control, 19(4): 177-183.
  15. Reddy, K.R. and D. Zhao. 2005. Interactive effects of elevated $CO_2$ and potassium deficiency on photosynthesis, growth and biomass partitioning of cotton. Field Crops Research 94:201-213. https://doi.org/10.1016/j.fcr.2005.01.004
  16. Resh, H.M. 1995. Hydroponic food production : a definitive guidebook of soilless food-growing methods. 5th ed. Woodbridge Press Publishing Company. p. 32-34.
  17. Sage, R.F. and R.C. John. 2001. Effects of low atmospheric $CO_2$ on plants : more than a thing of the past. Plant Science 6(1):18-24. https://doi.org/10.1016/S1360-1385(00)01813-6
  18. Shin, Y.S., J.E. Lee, M.K. Kim, J.D. Cheung. H.W. Do, J.U. Park, J.H. Kim, J.T. Park, S.T. Lee, and J.K. Suh. 2014. Effect of solid $CO_2$ generator treatment on fruit yield and quality of korean melon (Cucumis melo var. hybrida) Protected Horticulture and Plant Factory, 23:83-87. https://doi.org/10.12791/KSBEC.2014.23.2.83
  19. Taylor, G., R. Ceulemans, R. Ferris, S.D.L. Gardner, and B.Y. Shao. 2001. Increased leaf area expansion of hybrid poplar in elevated $CO_2$ from controlled environments to open-top chambers and to FACE. Environmental Pollution 115:463-472. https://doi.org/10.1016/S0269-7491(01)00235-4