DOI QR코드

DOI QR Code

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Taeho (Department of Nuclear Engineering, School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Ji Hyun (Department of Nuclear Engineering, School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Bahn, Chi Bum (School of Mechanical Engineering, Pusan National University)
  • Received : 2017.03.15
  • Accepted : 2017.11.22
  • Published : 2018.04.25

Abstract

Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

Keywords

References

  1. T.R. Allen, R.J.M. Konings, A.T. Motta, Corrosion of Zirconium Alloys, first ed., Elsevier Inc., 2012.
  2. A.T. Motta, M.J. Gomes da Silva, A. Yilmazbayhan, R.J. Comstock, Z. Cai, B. Lai, M. Limback, B. Kammenzind, S.W. Dean, Microstructural characterization of oxides formed on model Zr alloys using synchrotron radiation, J. ASTM Int. 5 (2008) 101257. https://doi.org/10.1520/JAI101257
  3. P. Bossis, G. Lelievre, P. Barberis, X. Iltis, F. Lefebvre, Multi-scale characterization of the metal-oxide interface of zirconium alloys, in: G.P. Sabol, G.D. Moan (Eds.), Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, ASTM, West Conshohocken, PA, 2000, pp. 918-945.
  4. J.S. Bryner, The cyclic nature of corrosion of zircaloy-4 in 633 K water, J. Nucl. Mater. 82 (1979) 84-101. https://doi.org/10.1016/0022-3115(79)90042-4
  5. M. Parise, O. Sicardy, G. Cailletaud, Modelling of the mechanical behavior of the metaleoxide system during Zr alloy oxidation, J. Nucl. Mater. 256 (1998) 35-46. https://doi.org/10.1016/S0022-3115(98)00045-2
  6. N. Ni, S. Lozano-Perez, J.M. Sykes, G.D.W. Smith, C.R.M. Grovenor, Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLOTM alloys during corrosion in high temperature pressurised water, Corros. Sci. 53 (2011) 4073-4083. https://doi.org/10.1016/j.corsci.2011.08.013
  7. P. Tejland, H.O. Andren, Origin and effect of lateral cracks in oxide scales formed on zirconium alloys, J. Nucl. Mater. 430 (2012) 64-71. https://doi.org/10.1016/j.jnucmat.2012.06.039
  8. N. Ni, D. Hudson, J. Wei, P. Wang, S. Lozano-Perez, G.D.W. Smith, J.M. Sykes, S.S. Yardley, K.L. Moore, S. Lyon, R.A. Cottis, M. Preuss, C.R.M. Grovenor, How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys, Acta Mater. 60 (2012) 7132-7149. https://doi.org/10.1016/j.actamat.2012.09.021
  9. R.A. Ploc, Mechanism of deuterium pickup in Zr-2.5Nb alloy, Mater. High Temp. 17 (2000) 29-34. https://doi.org/10.1179/mht.2000.006
  10. B. Cox, Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys, J. Nucl. Mater. 336 (2005) 331-368. https://doi.org/10.1016/j.jnucmat.2004.09.029
  11. W. Gong, H. Zhang, C. Wu, H. Tian, X. Wang, The role of alloying elements in the initiation of nanoscale porosity in oxide films formed on zirconium alloys, Corros. Sci. 77 (2013) 391-396. https://doi.org/10.1016/j.corsci.2013.08.006
  12. Y. Dong, A.T. Motta, E.A. Marquis, Atom probe tomography study of alloying element distributions in Zr alloys and their oxides, J. Nucl. Mater. 442 (2013) 270-281. https://doi.org/10.1016/j.jnucmat.2013.08.055
  13. R. Grovenor, N. Ni, D. Hudson, S.S. Yardley, K.L. Moore, G.D.W. Smith, S. Lozano-perez, J.M. Sykes, Mechanisms of oxidation of fuel cladding alloys revealed by high resolution APT, TEM and SIMS analysis, in: Mater. Res. Soc. Symp, 2012, pp. 101-112.
  14. W. Ma, F.W. Herbert, S.D. Senanayake, B. Yildiz, Non-equilibrium oxidation states of zirconium during early stages of metal oxidation, Appl. Phys. Lett. 106 (2015) 1-6.
  15. A.T. Motta, A. Couet, R.J. Comstock, Corrosion of zirconium alloys used for nuclear fuel cladding, Annu. Rev. Mater. Res. 45 (2015) 311-343. https://doi.org/10.1146/annurev-matsci-070214-020951
  16. C.C. Lin, A review of corrosion product transport and radiation field buildup in boiling water reactors, Prog. Nucl. Energy 51 (2009) 207-224. https://doi.org/10.1016/j.pnucene.2008.05.005
  17. E. Chajduk, A. Bojanowska-Czajka, Corrosion mitigation in coolant systems in nuclear power plants, Prog. Nucl. Energy 88 (2016) 1-9.
  18. J.-S. Choi, S.-C. Park, K.-R. Park, H.-Y. Yang, O.-B. Yang, Effect of zinc injection on the corrosion products in nuclear fuel assembly, Nat. Sci. 5 (2013) 173-181.
  19. Electric Power Research Institute (EPRI), Pressurized Water Reactor Primary Water Chemistry Guidelines: Volume 1, Revision 5, EPRI, Palo Alto, CA, 2003, p. 1002884.
  20. D.M. Wells, R. Becker, C. Anghel, J. Iyer, J. Stevens, Out-of-reactor test of corrosion and hydrogen pickup in fuel cladding materials, in: Nuclear Plant Chemistry Conference 2014, 2014.
  21. S. Kass, The development of the Zircaloys, Corros. Zircon. Alloy 3-3 (1964) 25.
  22. H.K. Yoon, H.J. Kim, J.C. Shin, Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant, Transaction of the Korean Nuclear Society Autumn Meeting Gyeongju, Korea, October, 2013, pp. 24-25.
  23. J. Wei, P. Frankel, E. Polatidis, M. Blat, A. Ambard, R.J. Comstock, L. Hallstadius, D. Hudson, G.D.W. Smith, C.R.M. Grovenor, M. Klaus, R.A. Cottis, S. Lyon, M. Preuss, The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr-Sn-Nb alloys, Acta Mater. 61 (2013) 4200-4214. https://doi.org/10.1016/j.actamat.2013.03.046
  24. H.J. Beie, A. Mitwalsky, F. Garzarolli, H. Ruhmann, H.J. Sell, Examinations of the corrosion mechanism of zirconium alloys, in: A.M. Garde, E.R. Bradley (Eds.), Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1994, pp. 615-629.
  25. J.Y. Park, S.J. Yoo, B.K. Choi, Y.H. Jeong, Oxide microstructures of advanced Zr alloys corroded in $360^{\circ}C$ water loop, J. Alloys Compd. 437 (2007) 274-279. https://doi.org/10.1016/j.jallcom.2006.07.101
  26. A. Yilmazbayhan, E. Breval, A.T. Motta, R.J. Comstock, Transmission electron microscopy examination of oxide layers formed on Zr alloys, J. Nucl. Mater. 349 (2006) 265-281. https://doi.org/10.1016/j.jnucmat.2005.10.012
  27. B. De Gabory, A.T. Motta, K. Wang, Transmission electron microscopy characterization of Zircaloy-4 and $ZIRLO^{TM}$ oxide layers, J. Nucl. Mater. 456 (2015) 272-280. https://doi.org/10.1016/j.jnucmat.2014.09.073
  28. P. Tejland, M. Thuvander, H.O. Andren, S. Ciurea, T. Andersson, M. Dahlback, L. Hallstadius, H.-O. Andren, S. Ciurea, T. Andersson, M. Dahlback, L. Hallstadius, P. Barberis, S.W. Dean, Detailed analysis of the microstructure of the metal/oxide interface region in Zircaloy-2 after autoclave corrosion testing, J. ASTM Int. 8 (2011) 102956. https://doi.org/10.1520/JAI102956
  29. H. Bae, T. Kim, J.H. Kim, C.B. Bahn, Transmission electron microscopy characterization of early pre-transition oxides formed on ZIRLOTM, Corros. Sci. Technol. 14 (2015) 301-312. https://doi.org/10.14773/cst.2015.14.6.301
  30. M. Rühle, M. Wilkens, Defocusing contrast of cavities, Cryst. Lattice Defects 6 (3) (1975) 129-140.
  31. N. Ni, S. Lozano-Perez, M.L.L. Jenkins, C. English, G.D.W.D.W. Smith, J.M.M. Sykes, C.R.M.R.M. Grovenor, Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates, Scr. Mater. 62 (2010) 564-567. https://doi.org/10.1016/j.scriptamat.2009.12.043
  32. J.A. Munoz-Tabares, E. Jimenez-Pique, M. Anglada, Subsurface evaluation of hydrothermal degradation of zirconia, Acta Mater. 59 (2011) 473-484. https://doi.org/10.1016/j.actamat.2010.09.047
  33. J. Chevalier, L. Gremillard, S. Deville, Low-temperature degradation of zirconia and implications for biomedical implants,Annu. Rev.Mater. Res. 37 (2007) 1-32. https://doi.org/10.1146/annurev.matsci.37.052506.084250
  34. H. Tsubakino, Y. Kuroda, M. Niibe, Surface relief associated with isothermal martensite in zirconia-3-mol%-yttria ceramics observed by atomic force microscopy, J. Am. Ceram. Soc. 82 (1999) 2921-2923.
  35. H. Tsubakino, K. Sonoda, R. Nozato, Martensite transformation behaviour during isothermal ageing in partially stabilized zirconia with and without alumina addition, J. Mater. Sci. Lett. 12 (1993) 196-198. https://doi.org/10.1007/BF00819957
  36. W.Z. Zhu, T.C. Lei, Y. Zhou, Time-dependent tetragonal to monoclinic transition in hot-pressed zirconia stabilized with 2 mol {%} yttria, J. Mater. Sci. 28 (1993) 6479-6483. https://doi.org/10.1007/BF01352217
  37. X. Guo, Property degradation of tetragonal zirconia induced by lowtemperature defect reaction with water molecules, Chem. Mater. 16 (2004) 3988-3994. https://doi.org/10.1021/cm040167h
  38. J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc. 92 (2009) 1901-1920. https://doi.org/10.1111/j.1551-2916.2009.03278.x
  39. T. Duong, A.M. Limarga, D.R. Clarke, Diffusion of water species in yttriastabilized zirconia, J. Am. Ceram. Soc. 92 (2009) 2731-2737. https://doi.org/10.1111/j.1551-2916.2009.03271.x
  40. G. Sundell, M. Thuvander, A.K. Yatim, H. Nordin, H.O. Andren, Direct observation of hydrogen and deuterium in oxide grain boundaries in corroded Zirconium alloys, Corros. Sci. 90 (2015) 1-4. https://doi.org/10.1016/j.corsci.2014.10.016
  41. G. Sundell, M. Thuvander, H.-O. Andren, Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys, Corros. Sci. 102 (2016) 490-502. https://doi.org/10.1016/j.corsci.2015.11.002
  42. M. Lindgren, I. Panas, Oxygen vacancy formation, mobility, and hydrogen pick-up during oxidation of zirconium by water, Oxid. Met. 87 (2017) 355. https://doi.org/10.1007/s11085-016-9695-z
  43. M. Lindgren, C. Geers, I. Panas, Possible origin and roles of nano-porosity in $ZrO_2$ scales for hydrogen pick-up in Zr alloys, J. Nucl. Mater. 492 (2017) 22-31. https://doi.org/10.1016/j.jnucmat.2017.05.017

Cited by

  1. Long-Term Corrosion Testing of Zy-4 in a LiOH Solution under High Pressure and Temperature Conditions vol.14, pp.16, 2018, https://doi.org/10.3390/ma14164586