References
- T.R. Allen, R.J.M. Konings, A.T. Motta, Corrosion of Zirconium Alloys, first ed., Elsevier Inc., 2012.
- A.T. Motta, M.J. Gomes da Silva, A. Yilmazbayhan, R.J. Comstock, Z. Cai, B. Lai, M. Limback, B. Kammenzind, S.W. Dean, Microstructural characterization of oxides formed on model Zr alloys using synchrotron radiation, J. ASTM Int. 5 (2008) 101257. https://doi.org/10.1520/JAI101257
- P. Bossis, G. Lelievre, P. Barberis, X. Iltis, F. Lefebvre, Multi-scale characterization of the metal-oxide interface of zirconium alloys, in: G.P. Sabol, G.D. Moan (Eds.), Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, ASTM, West Conshohocken, PA, 2000, pp. 918-945.
- J.S. Bryner, The cyclic nature of corrosion of zircaloy-4 in 633 K water, J. Nucl. Mater. 82 (1979) 84-101. https://doi.org/10.1016/0022-3115(79)90042-4
- M. Parise, O. Sicardy, G. Cailletaud, Modelling of the mechanical behavior of the metaleoxide system during Zr alloy oxidation, J. Nucl. Mater. 256 (1998) 35-46. https://doi.org/10.1016/S0022-3115(98)00045-2
- N. Ni, S. Lozano-Perez, J.M. Sykes, G.D.W. Smith, C.R.M. Grovenor, Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLOTM alloys during corrosion in high temperature pressurised water, Corros. Sci. 53 (2011) 4073-4083. https://doi.org/10.1016/j.corsci.2011.08.013
- P. Tejland, H.O. Andren, Origin and effect of lateral cracks in oxide scales formed on zirconium alloys, J. Nucl. Mater. 430 (2012) 64-71. https://doi.org/10.1016/j.jnucmat.2012.06.039
- N. Ni, D. Hudson, J. Wei, P. Wang, S. Lozano-Perez, G.D.W. Smith, J.M. Sykes, S.S. Yardley, K.L. Moore, S. Lyon, R.A. Cottis, M. Preuss, C.R.M. Grovenor, How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys, Acta Mater. 60 (2012) 7132-7149. https://doi.org/10.1016/j.actamat.2012.09.021
- R.A. Ploc, Mechanism of deuterium pickup in Zr-2.5Nb alloy, Mater. High Temp. 17 (2000) 29-34. https://doi.org/10.1179/mht.2000.006
- B. Cox, Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys, J. Nucl. Mater. 336 (2005) 331-368. https://doi.org/10.1016/j.jnucmat.2004.09.029
- W. Gong, H. Zhang, C. Wu, H. Tian, X. Wang, The role of alloying elements in the initiation of nanoscale porosity in oxide films formed on zirconium alloys, Corros. Sci. 77 (2013) 391-396. https://doi.org/10.1016/j.corsci.2013.08.006
- Y. Dong, A.T. Motta, E.A. Marquis, Atom probe tomography study of alloying element distributions in Zr alloys and their oxides, J. Nucl. Mater. 442 (2013) 270-281. https://doi.org/10.1016/j.jnucmat.2013.08.055
- R. Grovenor, N. Ni, D. Hudson, S.S. Yardley, K.L. Moore, G.D.W. Smith, S. Lozano-perez, J.M. Sykes, Mechanisms of oxidation of fuel cladding alloys revealed by high resolution APT, TEM and SIMS analysis, in: Mater. Res. Soc. Symp, 2012, pp. 101-112.
- W. Ma, F.W. Herbert, S.D. Senanayake, B. Yildiz, Non-equilibrium oxidation states of zirconium during early stages of metal oxidation, Appl. Phys. Lett. 106 (2015) 1-6.
- A.T. Motta, A. Couet, R.J. Comstock, Corrosion of zirconium alloys used for nuclear fuel cladding, Annu. Rev. Mater. Res. 45 (2015) 311-343. https://doi.org/10.1146/annurev-matsci-070214-020951
- C.C. Lin, A review of corrosion product transport and radiation field buildup in boiling water reactors, Prog. Nucl. Energy 51 (2009) 207-224. https://doi.org/10.1016/j.pnucene.2008.05.005
- E. Chajduk, A. Bojanowska-Czajka, Corrosion mitigation in coolant systems in nuclear power plants, Prog. Nucl. Energy 88 (2016) 1-9.
- J.-S. Choi, S.-C. Park, K.-R. Park, H.-Y. Yang, O.-B. Yang, Effect of zinc injection on the corrosion products in nuclear fuel assembly, Nat. Sci. 5 (2013) 173-181.
- Electric Power Research Institute (EPRI), Pressurized Water Reactor Primary Water Chemistry Guidelines: Volume 1, Revision 5, EPRI, Palo Alto, CA, 2003, p. 1002884.
- D.M. Wells, R. Becker, C. Anghel, J. Iyer, J. Stevens, Out-of-reactor test of corrosion and hydrogen pickup in fuel cladding materials, in: Nuclear Plant Chemistry Conference 2014, 2014.
- S. Kass, The development of the Zircaloys, Corros. Zircon. Alloy 3-3 (1964) 25.
- H.K. Yoon, H.J. Kim, J.C. Shin, Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant, Transaction of the Korean Nuclear Society Autumn Meeting Gyeongju, Korea, October, 2013, pp. 24-25.
- J. Wei, P. Frankel, E. Polatidis, M. Blat, A. Ambard, R.J. Comstock, L. Hallstadius, D. Hudson, G.D.W. Smith, C.R.M. Grovenor, M. Klaus, R.A. Cottis, S. Lyon, M. Preuss, The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr-Sn-Nb alloys, Acta Mater. 61 (2013) 4200-4214. https://doi.org/10.1016/j.actamat.2013.03.046
- H.J. Beie, A. Mitwalsky, F. Garzarolli, H. Ruhmann, H.J. Sell, Examinations of the corrosion mechanism of zirconium alloys, in: A.M. Garde, E.R. Bradley (Eds.), Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1994, pp. 615-629.
-
J.Y. Park, S.J. Yoo, B.K. Choi, Y.H. Jeong, Oxide microstructures of advanced Zr alloys corroded in
$360^{\circ}C$ water loop, J. Alloys Compd. 437 (2007) 274-279. https://doi.org/10.1016/j.jallcom.2006.07.101 - A. Yilmazbayhan, E. Breval, A.T. Motta, R.J. Comstock, Transmission electron microscopy examination of oxide layers formed on Zr alloys, J. Nucl. Mater. 349 (2006) 265-281. https://doi.org/10.1016/j.jnucmat.2005.10.012
-
B. De Gabory, A.T. Motta, K. Wang, Transmission electron microscopy characterization of Zircaloy-4 and
$ZIRLO^{TM}$ oxide layers, J. Nucl. Mater. 456 (2015) 272-280. https://doi.org/10.1016/j.jnucmat.2014.09.073 - P. Tejland, M. Thuvander, H.O. Andren, S. Ciurea, T. Andersson, M. Dahlback, L. Hallstadius, H.-O. Andren, S. Ciurea, T. Andersson, M. Dahlback, L. Hallstadius, P. Barberis, S.W. Dean, Detailed analysis of the microstructure of the metal/oxide interface region in Zircaloy-2 after autoclave corrosion testing, J. ASTM Int. 8 (2011) 102956. https://doi.org/10.1520/JAI102956
- H. Bae, T. Kim, J.H. Kim, C.B. Bahn, Transmission electron microscopy characterization of early pre-transition oxides formed on ZIRLOTM, Corros. Sci. Technol. 14 (2015) 301-312. https://doi.org/10.14773/cst.2015.14.6.301
- M. Rühle, M. Wilkens, Defocusing contrast of cavities, Cryst. Lattice Defects 6 (3) (1975) 129-140.
- N. Ni, S. Lozano-Perez, M.L.L. Jenkins, C. English, G.D.W.D.W. Smith, J.M.M. Sykes, C.R.M.R.M. Grovenor, Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates, Scr. Mater. 62 (2010) 564-567. https://doi.org/10.1016/j.scriptamat.2009.12.043
- J.A. Munoz-Tabares, E. Jimenez-Pique, M. Anglada, Subsurface evaluation of hydrothermal degradation of zirconia, Acta Mater. 59 (2011) 473-484. https://doi.org/10.1016/j.actamat.2010.09.047
- J. Chevalier, L. Gremillard, S. Deville, Low-temperature degradation of zirconia and implications for biomedical implants,Annu. Rev.Mater. Res. 37 (2007) 1-32. https://doi.org/10.1146/annurev.matsci.37.052506.084250
- H. Tsubakino, Y. Kuroda, M. Niibe, Surface relief associated with isothermal martensite in zirconia-3-mol%-yttria ceramics observed by atomic force microscopy, J. Am. Ceram. Soc. 82 (1999) 2921-2923.
- H. Tsubakino, K. Sonoda, R. Nozato, Martensite transformation behaviour during isothermal ageing in partially stabilized zirconia with and without alumina addition, J. Mater. Sci. Lett. 12 (1993) 196-198. https://doi.org/10.1007/BF00819957
- W.Z. Zhu, T.C. Lei, Y. Zhou, Time-dependent tetragonal to monoclinic transition in hot-pressed zirconia stabilized with 2 mol {%} yttria, J. Mater. Sci. 28 (1993) 6479-6483. https://doi.org/10.1007/BF01352217
- X. Guo, Property degradation of tetragonal zirconia induced by lowtemperature defect reaction with water molecules, Chem. Mater. 16 (2004) 3988-3994. https://doi.org/10.1021/cm040167h
- J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc. 92 (2009) 1901-1920. https://doi.org/10.1111/j.1551-2916.2009.03278.x
- T. Duong, A.M. Limarga, D.R. Clarke, Diffusion of water species in yttriastabilized zirconia, J. Am. Ceram. Soc. 92 (2009) 2731-2737. https://doi.org/10.1111/j.1551-2916.2009.03271.x
- G. Sundell, M. Thuvander, A.K. Yatim, H. Nordin, H.O. Andren, Direct observation of hydrogen and deuterium in oxide grain boundaries in corroded Zirconium alloys, Corros. Sci. 90 (2015) 1-4. https://doi.org/10.1016/j.corsci.2014.10.016
- G. Sundell, M. Thuvander, H.-O. Andren, Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys, Corros. Sci. 102 (2016) 490-502. https://doi.org/10.1016/j.corsci.2015.11.002
- M. Lindgren, I. Panas, Oxygen vacancy formation, mobility, and hydrogen pick-up during oxidation of zirconium by water, Oxid. Met. 87 (2017) 355. https://doi.org/10.1007/s11085-016-9695-z
-
M. Lindgren, C. Geers, I. Panas, Possible origin and roles of nano-porosity in
$ZrO_2$ scales for hydrogen pick-up in Zr alloys, J. Nucl. Mater. 492 (2017) 22-31. https://doi.org/10.1016/j.jnucmat.2017.05.017
Cited by
- Long-Term Corrosion Testing of Zy-4 in a LiOH Solution under High Pressure and Temperature Conditions vol.14, pp.16, 2018, https://doi.org/10.3390/ma14164586