참고문헌
- IAEA, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants, 2013. No.NP-T-3.14.
- A.C. Cilliers, E.J. Mulder, Fault detection and characterisation in Pressurized Water Reactors using real-time simulations, Ann. Nucl. Energy 38 (2011) 1196-1205. https://doi.org/10.1016/j.anucene.2010.11.025
- K. Thomas, R. Boring, R. Lew, T. Ulrich, R. Vilim, A Computerized Operator Support System Prototype, INL/EXT-15-36788, Idaho National Laboratory, 2015.
- Y.-K. Liu, C.-l. Xie, M.-J. Peng, S.-H. Ling, Improvement of fault diagnosis efficiency in nuclear power plants using hybrid intelligence approach, Prog. Nucl. Energy 76 (76) (2014) 122-136. https://doi.org/10.1016/j.pnucene.2014.05.001
- H. Wang, M.-J. Peng, P. Wu, S.-Y. Cheng, Improved methods of online monitoring and prediction in condensate and feed water system of nuclear power plant, Ann. Nucl. Energy 90 (4) (2016) 44-53. https://doi.org/10.1016/j.anucene.2015.11.037
- P.M. Frank, Analytical and qualitative model-based fault diagnosis - a survey and some new results, Eur. J. Contr. 2 (1) (1996) 6-28. https://doi.org/10.1016/S0947-3580(96)70024-9
- M. Lind, X.X. Zhang, Functional modelling for fault diagnosis and its application for nuclear power plants, Nucl. Eng. Technol. 46 (6) (2014) 753-772. https://doi.org/10.5516/NET.04.2014.721
- H.C. Soon, S.K. Ki, S.C. Seong, G.K. Han, K.J. Hee, U.Y. Chul, Development of the on-line operator aid system OASYS using a rule-based expert system and fuzzy logic for nuclear power plants, Reactor Control 112 (1995) 266-294.
- J. Ma, J. Jiang, Applications of fault detection and diagnosis methods in nuclear power plants: a review, Prog. Nucl. Energy 53 (4) (2011) 255-266. https://doi.org/10.1016/j.pnucene.2010.12.001
- T.V. Santosh, G. Vinod, R.K. Saraf, A.K. Ghosh, H.S. Kushwaha, Application of artificial neural networks to nuclear power plant transient diagnosis, Reliab. Eng. Syst. Saf. 92 (6) (2007) 1468-1472. https://doi.org/10.1016/j.ress.2006.10.009
- B. Lu, B.R. Upadhyaya, Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis, Ann. Nucl. Energy 32 (2005) 897-912. https://doi.org/10.1016/j.anucene.2005.02.003
- O. Shigetoshi, Development and Application of the Plant Condition Monitoring System for Nuclear Power Plants, Scientech's 2013 Symposium, 2013.
- K. Hadad, M. Pourahmadi, H. Maraghi, Fault diagnosis and classification based on wavelet transform and neural network, Prog. Nucl. Energy 53 (6) (2011) 41-47. https://doi.org/10.1016/j.pnucene.2010.09.006
- A. Gofuku, Integrated diagnostic technique for nuclear power plants, Nucl. Eng. Technol. 46 (6) (2014) 725-736. https://doi.org/10.5516/NET.04.2014.719
- K. Zhao, An Integrated Approach to Performance Monitoring and Fault Diagnosis of Nuclear Power Systems, Doctor of Philosophy Degree, University of Tennessee, Knoxville, 2005.
- Y.Y. Chu, M. Yang, F. Yang, Design of an operator support system for online maintenance at nuclear power Plant, in: Proceedings of International Symposium on Future I&C for Nuclear Power Plants Cognitive Systems Engineering in Process Control International Symposium on Symbiotic Nuclear Power Systems (ICI2011), Daejeon, Korea, August 21-25, 2011.
- X. Li, J. Dezert, F. Smarandache, X. Huang, Evidence supporting measure of similarity for reducing the complexity in information fusion, Inf. Sci. 181 (4) (2011) 1818-1835. https://doi.org/10.1016/j.ins.2010.10.025
- A. Gofuku, H. Yoshikawa, S. Hayashi, K. Shimizu, J. Wakabayashi, Diagnostic techniques of a small-break loss-of-coolant accident at a pressurized water reactor plant, Nucl. Technol. 81 (1988) 313-332. https://doi.org/10.13182/NT88-A16054
- Y.Q. Wang, F. Li, Online monitoring the incore power distribution by using excore ion-chambers, Nucl. Eng. Des. 225 (2-3) (2003) 15-32.
- Idaho National Laboratory, Report from the Light Water Reactor Sustainability Workshop on On-line Monitoring Technologies, 2010. INL/EXT-10-19500.
- R. Dunia, S. Joe Qin, T.F. Edgar, T.J. McAvoy, Identification of faulty sensors using principal component analysis, AIChE J. 42 (10) (1996) 2797-2812. https://doi.org/10.1002/aic.690421011
- A. Herve, J. Lynne, Principal component analysis, Comput. Stat. 2 (4) (2010) 433-459. https://doi.org/10.1002/wics.101
- S.J. Qin, D. Ricardo, Determining the number of principal components for best reconstruction, J. Process Contr. 10 (2) (2000) 245-250. https://doi.org/10.1016/S0959-1524(99)00043-8
- M. Lind, Reasoning about causes and consequences in multilevel flow models, in: Advances in Safety, Reliability and Risk Management - Proceedings of the European Safety and Reliability Conference, ESREL, 2011, pp. 2359-2367.
- X.X. Zhang, M. Lind, O. Raven, Consequence reasoning in multilevel flow modelling, in: Proceedings 12th IFAC Symposium on Analysis, Design and Evaluation of Human-Machine Systems, 2013, pp. 187-194.
- S. Park, J. Park, G. Heo, Transient diagnosis and prognosis for secondary system in nuclear power plants, Nucl. Eng. Technol. 48 (5) (2016) 1184-1191. https://doi.org/10.1016/j.net.2016.03.009
- E. Zio, P. Baraldi, D. Roverso, An extended classifiability index for feature selection in nuclear transients, Ann. Nucl. Energy 32 (15) (2005) 1632-1649. https://doi.org/10.1016/j.anucene.2005.06.003
- A.C. Cilliers, Correlating hardware fault detection information from distributed control systems to isolate and diagnose a fault in pressurized water reactors, Ann. Nucl. Energy 54 (3) (2013) 91-103. https://doi.org/10.1016/j.anucene.2012.10.020
피인용 문헌
- Remaining Useful Life Prediction Techniques of Electric Valves for Nuclear Power Plants with Convolution Kernel and LSTM vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8349349
- A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models vol.53, pp.1, 2018, https://doi.org/10.1016/j.net.2020.07.001
- An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel vol.53, pp.2, 2018, https://doi.org/10.1016/j.net.2020.08.008
- Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network vol.53, pp.8, 2018, https://doi.org/10.1016/j.net.2021.02.028