DOI QR코드

DOI QR Code

Development status of microcell UO2 pellet for accident-tolerant fuel

  • Kim, Dong-Joo (Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Keon Sik (Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong Seok (Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Oh, Jang Soo (Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Jong Hun (Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Yang, Jae Ho (Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Koo, Yang-Hyun (Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute)
  • Received : 2017.11.09
  • Accepted : 2017.12.20
  • Published : 2018.03.25

Abstract

A microcell $UO_2$ pellet, as an accident-tolerant fuel pellet, is being developed to enhance the accident tolerance of nuclear fuels under accident conditions as well as the fuel performance under normal operation conditions. Improved capture-ability for highly radioactive and corrosive fission product (Cs and I) is the distinct feature of a ceramic microcell $UO_2$ pellet, and the enhanced pellet thermal conductivity is that of a metallic microcell $UO_2$ pellet. The fuel temperature can be effectively decreased by enhanced thermal conductivity. In this study, the material concepts of metallic and ceramic microcell $UO_2$ pellets were designed, and the fabrication process of microcell $UO_2$ pellets embodying the designed concept was developed. We successfully implemented the microcell $UO_2$ pellets and produced microcell $UO_2$ pellets. In addition, an assessment of the out-of-pile properties of a microcell $UO_2$ pellet was performed, and the in-reactor performance and behavior of the developed microcell pellets were evaluated through a Halden irradiation test. According to the expectations, the excellent performance of the microcell $UO_2$ pellets was confirmed by the online measurement data of the Halden irradiation test.

Keywords

References

  1. I. Younker, M. Fratoni, Neutronic evaluation of coating and cladding materials for accident tolerant fuels, Prog. Nucl. Energy 88 (2016) 10-18. https://doi.org/10.1016/j.pnucene.2015.11.006
  2. M.Q. Awan, L. Cao, H. Wu, Neutronic design and evaluation of a PWR fuel assembly with accident tolerant-fully ceramic micro-encapsulated (AT-FCM) fuel, Nucl. Eng. Des. 319 (2017) 126-139. https://doi.org/10.1016/j.nucengdes.2017.04.019
  3. K.D. Johnson, A.M. Raftery, D.A. Lopes, J. Wallenius, Fabrication and microstructural analysis of UN-$U_3Si_2$ composites for accident tolerant fuel applications, J. Nucl. Mater. 477 (2016) 18-23. https://doi.org/10.1016/j.jnucmat.2016.05.004
  4. C.P. Deck, G.M. Jacobsen, J. Sheeder, O. Gutierrez, J. Zhang, J. Stone, H.E. Khalifa, C.A. Back, Characterization of SiC-SiC composites for accident tolerant fuel cladding, J. Nucl. Mater. 466 (2015) 667-681. https://doi.org/10.1016/j.jnucmat.2015.08.020
  5. X. Wu, T. Kozlowski, J.D. Hales, Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions, Ann. Nucl. Energy 85 (2015) 763-775. https://doi.org/10.1016/j.anucene.2015.06.032
  6. J.H. Park, H.G. Kim, J.Y. Park, Y.I. Jung, D.J. Park, Y.H. Koo, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coat. Technol. 280 (2015) 256-259. https://doi.org/10.1016/j.surfcoat.2015.09.022
  7. J.G. Stone, R. Schleicher, C.P. Deck, G.M. Jacobsen, H.E. Khalifa, C.A. Back, Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding, J. Nucl. Mater. 466 (2015) 682-697. https://doi.org/10.1016/j.jnucmat.2015.08.001
  8. Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, K.W. Song, KAERI's development of LWR accident-tolerant fuel, Nucl. Technol. 186 (2014) 295-304. https://doi.org/10.13182/NT13-89
  9. H.G. Kim, J.H. Yang, W.J. Kim, Y.H. Koo, Development status of accident-tolerant fuel for light water reactors in Korea, Nucl. Eng. Technol. 48 (1) (2016) 1-15. https://doi.org/10.1016/j.net.2015.11.011
  10. D.J. Kim, Y.W. Rhee, J.H. Kim, K.S. Kim, J.S. Oh, J.H. Yang, Y.H. Koo, K.W. Song, Fabrication of microcell $UO_2$-Mo pellet with enhanced thermal conductivity, J. Nucl. Mater. 462 (2015) 289-295. https://doi.org/10.1016/j.jnucmat.2015.04.003
  11. K.A. Terrani, D. Wang, L.J. Ott, R.O. Montgomery, The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents, J. Nucl. Mater. 448 (2014) 512-519. https://doi.org/10.1016/j.jnucmat.2013.09.051
  12. N.R. Brown, A.J. Wysocki, K.A. Terrani, K.G. Xu, D.M. Wachs, The potential impact of enhanced accident tolerant cladding materials on reactivity initi- ated accidents in light water reactors, Ann. Nucl. Energy 99 (2017) 353-365. https://doi.org/10.1016/j.anucene.2016.09.033
  13. X. Wu, W. Li, Y. Wang, Y. Zhang, W. Tian, G. Su, S. Qiu, T. Liu, Y. Deng, H. Huang, Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions, Ann. Nucl. Energy 80 (2015) 1-13.
  14. G. Brillant, F. Gupta, A. Pasturel, Fission products stability in uranium dioxide, J. Nucl. Mater. 412 (2011) 170-176. https://doi.org/10.1016/j.jnucmat.2011.02.054
  15. J. Matsunaga, Y. Takagawa, K. Kusagaya, K. Une, R. Yuda, M. Hirai, Fundamentals of GNF Al-Si-O additive fuel, TopFuel 2009, Paris, France, September 6-10, American Nuclear Society, 2009.
  16. D. Jadernas, F. Corleoni, A. Puranen, P. Tejland, M. Granfors, PCI mitigation using fuel additives, TopFuel 2015, Zurich, Switzerland, September 13-17, American Nuclear Society, 2015.
  17. H.S. Lee, D.J. Kim, S.W. Kim, J.H. Yang, Y.H. Koo, D.R. Kim, Numerical charac- terization of microcell $UO_2$-Mo pellet for enhanced thermal performance, J. Nucl. Mater. 477 (2016) 88-94. https://doi.org/10.1016/j.jnucmat.2016.05.005

Cited by

  1. 사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가 vol.17, pp.1, 2018, https://doi.org/10.7733/jnfcwt.2019.17.1.37
  2. Numerical and experimental investigation on thermal expansion of UO2-5 vol% Mo microcell pellet for qualitative comparison to UO2 pellet vol.518, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2019.03.003
  3. Physics analysis of new TRU recycling options using FCM and MOX fueled PWR assemblies vol.52, pp.4, 2018, https://doi.org/10.1016/j.net.2019.10.006
  4. 핵분열 기체 포획 기능을 갖는 사고저항성 UO2 펠렛에서 형성되는 입계상의 미세구조 관찰 vol.27, pp.2, 2018, https://doi.org/10.4150/kpmi.2020.27.2.119
  5. In-situ synthesized nanocrystalline UO2/SiC composite with superior thermal conductivity vol.47, pp.22, 2018, https://doi.org/10.1016/j.ceramint.2021.07.290