References
- J.C. Brachet, C. Lorrette, A. Michaux, C. Sauder, I. Idarraga-Trujillo, M. Le Saux, M. Le Flem, F. Schuster, A. Billard, E. Monsifrot, E. Torres, F. Rebillat, J. Bischoff, A. Ambard, CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant LWRs fuel (LOCA and beyond LOCA conditions), in: Fontevraud 8: Conference on Contribution of Materials Investigations and Operating Experience to LWRs' Safety, Performance and Reliability; Avignon (France), 2015, 15-18 Sep 2014; 15 refs, 32 p.
- H.-G. Kim, J.-H. Yang, W.-J. Kim, Y.-H. Koo, Development status of accident-tolerant fuel for light water reactors in Korea, Nucl. Eng. Technol. 48 (1) (Feb. 2016) 1-15. https://doi.org/10.1016/j.net.2015.11.011
- B. Maier, et al., Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors, JOM 70 (2) (2018).
- J. Krejci, M. Sevecek, L. Cvrcek, Development of chromium and chromium nitride coated cladding for VVER reactors, in: Proceedings, WRFPM, 2017. A-131.
- А.S. Kuprin, et al., Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air, J. Nucl. Mater. 465 (Oct. 2015) 400-406. https://doi.org/10.1016/j.jnucmat.2015.06.016
- R. Van Nieuwenhove, V. Andersson, J. Balak, B. Oberlander, In-pile testing of CrN, TiAlN and AlCrN coatings on Zircaloy cladding in the halden reactor, in: 18th International Symposium on Zirconium in the Nuclear Industry, 2016.
- K. Daub, R. Van Nieuwenhove, H. Nordin, Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4, J. Nucl. Mater. 467 (Dec. 2015) 260-270. https://doi.org/10.1016/j.jnucmat.2015.09.041
- ASTM International, ASTM B614-b616 Standard Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces, West Conshohocken, PA, 2016.
- C.W. Weaver, Irradiation and the ductility of chromium, Scr. Metall. 2 (8) (Aug. 1968) 463-466. https://doi.org/10.1016/0036-9748(68)90195-6
- U. Holzwarth, H. Stamm, Mechanical and thermomechanical properties of commercially pure chromium and chromium alloys, J. Nucl. Mater. 300 (2) (2002) 161-177. https://doi.org/10.1016/S0022-3115(01)00745-0
- J.R. Stephens, W.D. Klopp, High-temperature creep of polycrystalline chromium, J. Common Met. 27 (1) (1972) 87-94. https://doi.org/10.1016/0022-5088(72)90108-7
- I. Idarraga-Trujillo, et al., Assessment at CEA of coated nuclear fuel cladding for LWRS with increased margins in LOCA and beyond LOCA conditions, in: Conference Paper LWR Fuel Performance Meeting, Top Fuel 2013, vol. 2, 2013, pp. 860-867.
- H.-G. Kim, I.-H. Kim, Y.-I. Jung, D.-J. Park, J.-Y. Park, Y.-H. Koo, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater. 465 (Oct. 2015) 531-539. https://doi.org/10.1016/j.jnucmat.2015.06.030
- R. Tucker Jr., Thermal spray technology, ASM Handbook, Volume 5A, Plast. Ind. 335 (2013) 336.
- V.K. Champagne, D. Helfritch, P. Leyman, S. Grendahl, B. Klotz, Interface material mixing formed by the deposition of copper on aluminum by means of the cold spray process, J. Therm. Spray Technol. 14 (3) (Sep. 2005) 330-334. https://doi.org/10.1361/105996305X59332
- M. Hassani-Gangaraj, D. Veysset, K.A. Nelson, C.A. Schuh, Supersonic impact of metallic micro-particles, in: Proceedings of the 2006 ITSC, ASM, Seattle, 2016. ArXiv161208081.
-
T. Stoltenhoff, F. Zimmermann, LOXPlate
$^{(R)}$ coatings for aluminum aerospace components exposed to high dynamic stresses, Praxair Surface Technologies GmbH, Ratingen, Germany, 2012. - R. Maev, V. Leshchynsky, A. Papyrin, Structure formation of Ni-based composite coatings during low pressure gas dynamic spraying, in: Proceedings of the 2006 International Thermal Spray Conference, 2006.
- N. Bay, Cold Welding. Part 1: Characteristics, Bonding Mechanisms, Bond Strength, 1986.
- J. Vlcek, L. Gimeno, H. Huber, E. Lugscheider, A systematic approach to material eligibility for the cold-spray process, J. Therm. Spray Technol. 14 (1) (2005) 125-133. https://doi.org/10.1361/10599630522738
-
C. Duriez, T. Dupont, B. Schmet, F. Enoch, Zircaloy-4 and M5
$^{(R)}$ high temperature oxidation and nitriding in air, J. Nucl. Mater. 380 (1-3) (Oct. 2008) 30-45. https://doi.org/10.1016/j.jnucmat.2008.07.002 - R.E. Pawel, J.V. Cathcart, R.A. McKee, The kinetics of oxidation of Zircaloy-4 in steam at high temperatures, J. Electrochem. Soc. 126 (7) (Jul. 1979) 1105-1111. https://doi.org/10.1149/1.2129227
- R.L. Williamson, et al., Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423 (1-3) (Apr. 2012) 149-163. https://doi.org/10.1016/j.jnucmat.2012.01.012
- J. Hales, et al., BISON Theory Manual the Equations behind Nuclear Fuel Analysis, Idaho National Laboratory (INL), Idaho Falls, ID (United States), 2016.
- P.E. Armstrong, H.L. Brown, Dynamic Young's modulus measurements above 1000 C on some pure polycrystalline metals and commercial graphites, Trans. Aime 230 (1964) no. LADC-6100.
- M. Wagih, Y. Che, K. Shirvan, Fuel performance of multi-layered zirconium based accident tolerant fuel cladding, in: ICAPP, 2017.
Cited by
- Oxidation behavior of RF magnetron sputtered Cr-SiC-Cr composites coating on zircaloy fuel cladding vol.6, pp.9, 2018, https://doi.org/10.1088/2053-1591/ab31e1
- Cracking of Cr-coated accident-tolerant fuel during normal operation and under power-ramping conditions vol.353, pp.None, 2018, https://doi.org/10.1016/j.nucengdes.2019.110275
- High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments vol.526, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.151737
- Characterization of PVD Cr, CrN, and TiN coatings on SiC vol.527, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2019.151781
- Analysis of Interface Fracture of Cold-Sprayed Coatings Due to Thermal Cycling vol.29, pp.1, 2018, https://doi.org/10.1007/s11666-019-00942-5
- System code evaluation of near-term accident tolerant claddings during boiling water reactor short-term and long-term station blackout accidents vol.356, pp.None, 2018, https://doi.org/10.1016/j.nucengdes.2019.110362
- Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings by coupling digital image correlation and acoustic emission vol.774, pp.None, 2020, https://doi.org/10.1016/j.msea.2019.138850
- Implications of accident tolerant fuels on thermal-hydraulic research vol.358, pp.None, 2020, https://doi.org/10.1016/j.nucengdes.2019.110432
- Effectiveness of Cr-Coated Zr-Alloy Clad in Delaying Fuel Degradation for a PWR During a Station Blackout Event vol.206, pp.3, 2018, https://doi.org/10.1080/00295450.2019.1649566
- Development and testing of multicomponent fuel cladding with enhanced accidental performance vol.52, pp.3, 2018, https://doi.org/10.1016/j.net.2019.08.015
- Physically Based Finite Element Modeling Method to Predict Metallic Bonding in Cold Spray vol.29, pp.4, 2020, https://doi.org/10.1007/s11666-020-01000-1
- Ion irradiation effects on Cr-coated zircaloy-4 surface wettability and pool boiling critical heat flux vol.362, pp.None, 2018, https://doi.org/10.1016/j.nucengdes.2020.110581
- Effect of surface characteristics and environmental aging on wetting of Cr-coated Zircaloy-4 accident tolerant fuel cladding material vol.535, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2020.152163
- Quantification of the effect of Cr-coated-Zircaloy cladding during a short term station black out vol.363, pp.None, 2020, https://doi.org/10.1016/j.nucengdes.2020.110678
- SEM and EBSD Characterization of Cold-Sprayed Chromium Coatings on Zircaloy-4 vol.26, pp.suppl2, 2020, https://doi.org/10.1017/s1431927620014543
- Risk-Informed Safety Analysis for Accident Tolerant Fuels vol.194, pp.8, 2018, https://doi.org/10.1080/00295639.2020.1732699
- Application and Development Progress of Cr-Based Surface Coatings in Nuclear Fuel Element: I. Selection, Preparation, and Characteristics of Coating Materials vol.10, pp.9, 2018, https://doi.org/10.3390/coatings10090808
- Pellet-cladding mechanical interaction analysis of Cr-coated Zircaloy cladding vol.367, pp.None, 2018, https://doi.org/10.1016/j.nucengdes.2020.110792
- High Temperature Anti-Oxidation Behavior and Mechanical Property of Radio Frequency Magnetron Sputtered Cr Coating vol.10, pp.11, 2018, https://doi.org/10.3390/met10111509
- Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4 vol.541, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2020.152420
- Irradiation-induced swelling of pure chromium with 5 MeV Fe ions in the temperature range 450–650 °C vol.543, pp.None, 2018, https://doi.org/10.1016/j.jnucmat.2020.152585
- Protection of Zr Alloy under High-Temperature Air Oxidation: A Multilayer Coating Approach vol.11, pp.2, 2018, https://doi.org/10.3390/coatings11020227
- High-Temperature Oxidation of Cr-Coated Resistance Upset Welds Made from E110 Alloy vol.11, pp.5, 2021, https://doi.org/10.3390/coatings11050577
- ZrN Phase Formation, Hardening and Nitrogen Diffusion Kinetics in Plasma Nitrided Zircaloy-4 vol.14, pp.13, 2018, https://doi.org/10.3390/ma14133572
- BISON: A Flexible Code for Advanced Simulation of the Performance of Multiple Nuclear Fuel Forms vol.207, pp.7, 2018, https://doi.org/10.1080/00295450.2020.1836940
- Study of Coatings Formed on Zirconium Alloy by Plasma Electrolytic Oxidation in Electrolyte with Submicron Yttria Powder Additives vol.11, pp.9, 2018, https://doi.org/10.3390/met11091392
- Integrating Advanced Modeling and Accelerated Testing for a Modernized Fuel Qualification Paradigm vol.207, pp.10, 2018, https://doi.org/10.1080/00295450.2020.1826272
- Corrosion Behavior of Chromium Coated Zy-4 Cladding under CANDU Primary Circuit Conditions vol.11, pp.11, 2018, https://doi.org/10.3390/coatings11111417
- Effects of oxidation and inter-diffusion on the fracture mechanisms of Cr-coated Zry-4 alloys: An in situ three-point bending study vol.212, pp.None, 2018, https://doi.org/10.1016/j.matdes.2021.110168
- Grid-to-rod fretting wear study of SiC/SiC composite accident-tolerant fuel claddings using an autoclave fretting bench test vol.488, pp.None, 2018, https://doi.org/10.1016/j.wear.2021.204172
- High-temperature oxidation of Cr-coated laser beam welds made from E110 zirconium alloy vol.195, pp.None, 2018, https://doi.org/10.1016/j.corsci.2021.110018
- Review on chromium coated zirconium alloy accident tolerant fuel cladding vol.895, pp.p1, 2018, https://doi.org/10.1016/j.jallcom.2021.162450