DOI QR코드

DOI QR Code

PM2.5 Simulations for the Seoul Metropolitan Area: (V) Estimation of North Korean Emission Contribution

수도권 초미세먼지 농도모사: (V) 북한 배출량 영향 추정

  • Bae, Minah (Department of Environmental & Safety Engineering, Ajou University) ;
  • Kim, Hyun Cheol (Air Resources Laboratory, National Oceanic and Atmospheric Administration) ;
  • Kim, Byeong-Uk (Georgia Environmental Protection Division) ;
  • Kim, Soontae (Department of Environmental & Safety Engineering, Ajou University)
  • Received : 2018.01.11
  • Accepted : 2018.02.23
  • Published : 2018.04.30

Abstract

Quantitative assessment on the impact from North Korean emissions to surface particulate matter(PM) concentration in the Seoul Metropolitan Area (SMA), South Korea is conducted using a 3-dimensional chemistry transport model. Transboundary transport of air pollutants and their precursors are important to understand regional air quality in East Asian countries. As North Korea locates in the middle of main transport pathways of Chinese pollutants, quantifiable estimation of its impact is essential for policy making in South Korean air quality management. In this study, the Community Multiscale Air Quality Modeling System is utilized to simulate regional air quality and its sensitivity, using the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment 2015 and the Clean Air Policy Support System 2013 emissions inventories for North and South Korea, respectively. Contributions were estimated by a brute force method, perturbing 50% of North and South Korean emissions. Simulations demonstrate that North Korean emissions contribute $3.89{\mu}g/m^3$ of annual surface PM concentrations in the SMA, which accounts 14.7% of the region's average. Impacts are dominant in nitrate and organic carbon (OC) concentrations, attributing almost 40% of SMA OC concentration during January and February. Clear seasonal variations are also found in North Korean emissions contribution to South Korea (and vice versa) due to seasonal characteristics of synoptic weather, especially by the change of seasonal flow patterns.

Keywords

References

  1. Baker, J. (2010) A cluster analysis of long range air transport pathways and associated pollutant concentrations within the UK, Atmospheric Environment, 44(4), 563-571. https://doi.org/10.1016/j.atmosenv.2009.10.030
  2. Benjey, W., Houyoux, M., Susick, J. (2001) Implementation of the SMOKE emission data processor and SMOKE tool input data processor in models-3, US EPA.
  3. Byun, D., Schere, K.L. (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Applied Mechanics Reviews, 59(2), 51-77. https://doi.org/10.1115/1.2128636
  4. Emery, C., Liu, Z., Russell, A.G., Odman, M.T., Yarwood, G., Kumar, N. (2017) Recommendations on statistics and benchmarks to assess photochemical model performance, Journal of the Air & Waste Management Association, 67(5), 582-598. https://doi.org/10.1080/10962247.2016.1265027
  5. Ghim, Y.S., Choi, Y., Kim, S., Bae, C.H., Park, J., Shin, H.J. (2017) Model performance evaluation and bias correction effect analysis for forecasting $PM_{2.5}$ concentrations, Journal of Korean Society for Atmospheric Environment, 33(1), 11-18. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2017.33.1.011
  6. Guenther, C.C. (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
  7. Itahashi, S., Uno, I., Kim, S. (2013) Seasonal source contributions of tropospheric ozone over East Asia based on CMAQ-HDDM, Atmospheric Environment, 70, 204-217. https://doi.org/10.1016/j.atmosenv.2013.01.026
  8. Jung, H.S., Lee, S.S. (2005) Environmental problem and policy of North Korea, PLANNING AND POLICY. (in Korean)
  9. Kim, B.-U., Bae, C., Kim, H.C., Kim, E., Kim, S. (2017a) Spatially and chemically resolved source apportionment analysis: Case study of high particulate matter event, Atmospheric Environment, 162, 55-70. https://doi.org/10.1016/j.atmosenv.2017.05.006
  10. Kim, H.C., Kim, S., Son, S.-W., Lee, P., Jin, C.-S., Kim, E., Kim, B.-U., Ngan, F., Bae, C., Song, C.-K., Stein, A. (2016) Synoptic perspectives on pollutant transport patterns observed by satellites over East Asia: Case studies with a conceptual model, Atmospheric Chemistry and Physics Discussions.
  11. Kim, H.C., Kim, E., Bae, C., Cho, J.H., Kim, B.-U., Kim, S. (2017b) Regional contributions to particulate matter concentration in the Seoul Metropolitan Area, Korea: Seasonal variation and sensitivity to meteorology and emissions inventory, Atmospheric Chemistry and Physics, 17(17), 10315-10332. https://doi.org/10.5194/acp-17-10315-2017
  12. Kim, H.C., Kim, S., Kim, B.-U., Jin, C.-S., Hong, S., Park, R., Son, S.-W., Bae, C., Bae, M., Song, C.-K., Stein, A. (2017c) Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea, Scientifc Reports, 7.
  13. Kim, I.-S., Lee, J.-Y., Kim, Y.-P. (2011) Energy usage and emissions of air pollutants in North Korea, Journal of Korean Society for Atmospheric Environment, 27(3), 303-312. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2011.27.3.303
  14. Kim, I.S., Lee, J.Y., Kim, Y.P. (2013) Impact of polycyclic aromatic hydrocarbon (PAH) emissions from North Korea to the air quality in the Seoul Metropolitan Area, South Korea, Atmospheric Environment, 70, 159-165. https://doi.org/10.1016/j.atmosenv.2012.12.040
  15. Kim, N.K., Kim, Y.P., Morino, Y., Kurokawa, J., Ohara, T. (2014) Verification of $NO_x$ emission inventories over North Korea, Environmental Pollution, 195, 236-244. https://doi.org/10.1016/j.envpol.2014.06.034
  16. Kim, S., Bae, C., Yoo, C., Kim, B.-U., Kim, H.C., Moon, N. (2017d) $PM_{2.5}$ simulations for the Seoul Metropolitan Area: (II) Estimation of self-contributions and emission-to-$PM_{2.5}$ conversion rates for each source category, Journal of Korean Society for Atmospheric Environment, 33(4), 377-392. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2017.33.4.377
  17. Kim, Y.M., Kim, J.W. (2008) A study on the estimation of air pollutants emission for North Korea, Korea Environmental Policy and Administration Society, 16(2), 151-177. (in Korean with English abstract)
  18. Kim, Y.P., Yeo, M.J. (2013) The trend of the concentrations of the criteria pollutants over Seoul, Journal of Korean Society for Atmospheric Environment, 29(4), 369-377. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.4.369
  19. Lee, J.Y., Kim, Y.P. (2007) Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity, Atmospheric Chemistry and Physics, 7, 3587-3596.
  20. Ministry Of Environment (MOE) (2017) Comprehensive Plan Report, http://www.me.go.kr/home/file/readDownloadFile.do?fileId=152146&fileSeq=1 (accessed on Dec. 22, 2017). (in Korean)
  21. National Institute of Environmental Research (NIER) (2013) Guidance for Developing National Emission Inventories of Criteria Air Pollutants in South Korea, http://airemiss.nier.go.kr (accessed on Dec. 22, 2017). (in Korean)
  22. Skamarock, W.C., Klemp, J.B. (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, Journal of Computational Physics, 227(7), 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
  23. Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F. (2015a) NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bulletin of the American Meteorological Society, 96, 2059-2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  24. Stein, A.F., Ngan, F., Draxler, R.R., Chai, T. (2015b) Potential use of transport and dispersion model ensembles for forecasting applications, Weather and Forecasting, 30(3), 639-655. https://doi.org/10.1175/WAF-D-14-00153.1
  25. Watts, N., Amann, M., Ayeb-Karlsson, S., Belesova, K., Bouley, T., Boykoff, M., Byass, P., Cai, W., Campbell-Lendrum, D., Chambers, J., Cox, P.M., Daly, M., Dasandi, N., Davies, M., Depledge, M., Depoux, A., Dominguez-Salas, P., Drummond, P., Ekins, P., Flahault, A., Frumkin, H., Georgeson, L., Ghanei, M., Grace, D., Graham, H., Grojsman, R., Haines, A., Hamilton, I., Hartinger, S., Johnson, A., Kelman, I., Kiesewetter, G., Kniveton, D., Liang, L., Lott, M., Lowe, R., Mace, G., Odhiambo Sewe, M., Maslin, M., Mikhaylov, S., Milner, J., Latif, A.M., Moradi-Lakeh, M., Morrissey, K., Murray, K., Neville, T., Nilsson, M., Oreszczyn, T., Owf, F., Pencheon, D., Pye, S., Rabbaniha, M., Robinson, E., Rocklov, J., Schütte, S., Shumake-Guillemot, J., Steinbach, R., Tabatabaei, M., Wheeler, N., Wilkinson, P., Gong, P., Montgomery, H., Costello, A. (2017) The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health, The Lancet, http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)32464-9/references (accessed on Dec. 12, 2017).
  26. Wittig, A.E., Takahama, S., Khlystov, A.Y., Pandis, S.N., Hering, S., Kirby, B., Davidson, C. (2004) Semi-continuous $PM_{2.5}$ inorganic composition measurements during the Pittsburgh Air Quality Study, Atmospheric Environment, 38(20), 3201-3213. https://doi.org/10.1016/j.atmosenv.2004.03.002