DOI QR코드

DOI QR Code

Response prediction of laced steel-concrete composite beams using machine learning algorithms

  • Thirumalaiselvi, A. (Academy of Scientific and Innovative Research, CSIR-Structural Engineering Research Centre, CSIR Campus) ;
  • Verma, Mohit (Academy of Scientific and Innovative Research, CSIR-Structural Engineering Research Centre, CSIR Campus) ;
  • Anandavalli, N. (Academy of Scientific and Innovative Research, CSIR-Structural Engineering Research Centre, CSIR Campus) ;
  • Rajasankar, J. (Academy of Scientific and Innovative Research, CSIR-Structural Engineering Research Centre, CSIR Campus)
  • 투고 : 2017.10.31
  • 심사 : 2018.02.14
  • 발행 : 2018.05.10

초록

This paper demonstrates the potential application of machine learning algorithms for approximate prediction of the load and deflection capacities of the novel type of Laced Steel Concrete-Composite (LSCC) beams proposed by Anandavalli et al. (Engineering Structures 2012). Initially, global and local responses measured on LSCC beam specimen in an experiment are used to validate nonlinear FE model of the LSCC beams. The data for the machine learning algorithms is then generated using validated FE model for a range of values of the identified sensitive parameters. The performance of four well-known machine learning algorithms, viz., Support Vector Regression (SVR), Minimax Probability Machine Regression (MPMR), Relevance Vector Machine (RVM) and Multigene Genetic Programing (MGGP) for the approximate estimation of the load and deflection capacities are compared in terms of well-defined error indices. Through relative comparison of the estimated values, it is demonstrated that the algorithms explored in the present study provide a good alternative to expensive experimental testing and sophisticated numerical simulation of the response of LSCC beams. The load carrying and displacement capacity of the LSCC was predicted well by MGGP and MPMR, respectively.

키워드

참고문헌

  1. Abuomar, O., Nouranian, S., King, R., Ricks, T.M. and Lacy, T. E. (2015), "Comprehensive mechanical property classification of vapor-grown carbon nanofiber/vinyl ester nanocomposites using support vector machines", Comput. Mater. Sci., 99, 316-325. https://doi.org/10.1016/j.commatsci.2014.12.029
  2. Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
  3. Anandavalli, N., Lakshmanan, N., Iyer, N.R., Samuel Knight, G.M. and Rajasankar, J. (2011), "A novel modelling technique for blast analysis of steel-concrete composite panels", Proc. Eng., 14, 2429-2437. https://doi.org/10.1016/j.proeng.2011.07.305
  4. Anandavalli, N., Lakshmanan, N., Samuel Knight, G.M., Iyer, N.R. and Rajasankar, J. (2012), "Performance of laced steelconcrete composite (LSCC) beams under monotonic loading", Eng. Struct., 41, 177-185. https://doi.org/10.1016/j.engstruct.2012.03.033
  5. Attard, M.M. and Setunge, S. (1996), "The stress-strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-442.
  6. Babanajad, S.K., Gandomi, A.H. and Alavi, A.H. (2017), "New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach", Adv. Eng. Softw., 110, 55-68. https://doi.org/10.1016/j.advengsoft.2017.03.011
  7. Bheemreddy, V., Chandrashekhara, K., Dharani, L.R. and Hilmas, G.E. (2013), "Modeling of fiber pull-out in continuous fiber reinforced ceramic composites using finite element method and artificial neural networks", Comput. Mater. Sci., 79, 663-673. https://doi.org/10.1016/j.commatsci.2013.07.026
  8. Bowerman, H., Coyle, N. and Chapman, J.C. (2002), "An innovative steel-concrete construction system", Struct. Eng., 80(20), 33-38.
  9. Cheng, M.Y. and Prayogo, D. (2014), "Symbiotic organisms Search: A new metaheuristic optimization algorithm", Comput. Struct., 139, 98-112. https://doi.org/10.1016/j.compstruc.2014.03.007
  10. Gajewski, J., Golewski, P. and Sadowski, T. (2017), "Geometry optimization of a thin-walled element for an air structure using hybrid system integrating artificial neural network and finite element method", Compos. Struct., 159, 589-599. https://doi.org/10.1016/j.compstruct.2016.10.007
  11. Gandomi, A.H. and Alavi, A.H. (2012), "A new multigene genetic programming approach to nonlinear system modeling. Part I: Materials and structural engineering problems", Neur. Comput. Appl., 21(1), 171-187. https://doi.org/10.1007/s00521-011-0734-z
  12. Guo, Z. and Zang, X. (1987), "Investigation of complete stressdeformation curves for concrete in tension", ACI J., 82(3), 310-24.
  13. Kumar, M., Mittal, M. and Samui, P. (2013), "Performance assessment of genetic programming (GP) and minimax probability machine regression (MPMR) for prediction of seismic ultrasonic attenuation", Earthq. Sci., 26(2), 147-150. https://doi.org/10.1007/s11589-013-0018-z
  14. Lanckriet, G.R., Ghaoui, L.E., Bhattacharyya, C. and Jordan, M.I. (2002), "A robust minimax approach to classification", J. Mach. Learn. Res., 3, 555-582.
  15. Leekitwattana, M. (2011), "Analysis of an alternative topology for steel-concrete-steel sandwich beams incorporating inclined shear connectors", Ph.D. Dissertation, University of Southampton, Southampton, U.K.
  16. Liew, J.R., Sohel, K.M.A. and Koh, C.G. (2009), "Impact tests on steel-concrete-steel sandwich beams with lightweight concrete core", Eng. Struct., 31(9), 2045-2059. https://doi.org/10.1016/j.engstruct.2009.03.007
  17. Liew, J.Y.R. and Sohel, K.M.A. (2009), "Lightweight steelconcrete- steel sandwich system with J-hook connectors", Eng. Struct., 31(5), 1166-1178. https://doi.org/10.1016/j.engstruct.2009.01.013
  18. Luo, Y., Li, A. and Kand, Z. (2012), "Parametric study of bonded steel-concrete composite beams by using finite element analysis", Eng. Struct., 34, 40-51. https://doi.org/10.1016/j.engstruct.2011.08.036
  19. Mozumder, R.A., Laskar, A.I. and Hussain, M. (2017), "Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines", Constr. Build. Mater., 132, 412-424. https://doi.org/10.1016/j.conbuildmat.2016.12.012
  20. Prem, P.R., Murthy, A.R. and Verma, M. (2018), "Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC", Constr. Build. Mater., 158, 670-682. https://doi.org/10.1016/j.conbuildmat.2017.10.063
  21. Prem, P.R., Verma, M., Murthy, A.R., Rajasankar, J. and Bharatkumar, B.H. (2017), "Numerical and theoretical modelling of low velocity impact on UHPC panels", Struct. Eng. Mech., 63(2), 207-215. https://doi.org/10.12989/SEM.2017.63.2.207
  22. Samui, P. (2012), "Application of relevance vector machine for prediction of ultimate capacity of driven piles in cohesionless soils", Geotech. Geolog. Eng., 30(5), 1261-1270. https://doi.org/10.1007/s10706-012-9539-9
  23. Samui, P., Hariharan, R. and Karthikeyan, J. (2014), "Determination of stability of slope using Minimax Probability Machine", Georisk: Assess. Manage. Risk Eng. Syst. Geohaz., 8(2), 147-151. https://doi.org/10.1080/17499518.2014.897488
  24. Searson, D.P., Leahy, D.E. and Willis, M.J. (2010), "GPTIPS: An open source genetic programming toolbox for multigene symbolic regression", Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, March.
  25. Singh, D., Maheshwari, S., Zaman, M. and Commuri, S. (2018), "Kernel machines and firefly algorithm based dynamic modulus prediction model for asphalt mixes considering aggregate morphology", Constr. Build. Mater., 159, 408-416. https://doi.org/10.1016/j.conbuildmat.2017.10.133
  26. Strohmann, T. and Grudic, G.Z. (2002), "A formulation for minimax probability machine regression", Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, December.
  27. Thirumalaiselvi, A., Anandavalli, N., and Rajasankar, J. (2017), "Mechanics based analytical approaches to predict nonlinear behaviour of LSCC beams", Struct. Eng. Mech., 64(3), 311-321. https://doi.org/10.12989/SEM.2017.64.3.311
  28. Thirumalaiselvi, A., Anandavalli, N., Rajasankar, J. and Iyer, N.R. (2015), "Blast response studies on laced steel-concrete composite (LSCC) slabs", Proceedings of the Advances in Structural Engineering, New Delhi, India, December.
  29. Thirumalaiselvi, A., Anandavalli, N., Rajasankar, J. and Iyer, N.R. (2016), "Numerical evaluation of deformation capacity of Laced steel-concrete composite beams", Steel Compos. Struct., 20(1), 167-184. https://doi.org/10.12989/scs.2016.20.1.167
  30. Tipping, M.E. (2001), "Sparse Bayesian learning and the relevance vector machine", J. Mach. Learn. Res., 1, 211-244.
  31. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intellig. Manufact.
  32. Tomlinson, M., Tomlinson, A., Chapman, M.L., Jefferson, A.D. and Wright, H.D. (1989), "Shell composite construction for shallow draft immersed tube tunnels", Proceedings of the ICE International Conference on Immersed Tube Tunnel Techniques, Manchester, U.K., April.
  33. Topcu, I.B. and Saridemir, M. (2008), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42(1), 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011
  34. Vapnik, V. (2000), The Nature of Statistical Learning Theory, Springer Science & Business Media, New York, U.S.A.
  35. Verma, M., Thirumalaiselvi, A. and Rajasankar, J. (2017), "Kernel-based models for prediction of cement compressive strength" Neur. Comput. Appl., 28(1), 1083-1100. https://doi.org/10.1007/s00521-016-2419-0
  36. Viswanathan, R., Jagan, J., Samui, P. and Porchelvan, P. (2015), "Spatial variability of rock depth using simple kriging, ordinary kriging, RVM and MPMR", Geotech. Geolog. Eng., 33(1), 69-78. https://doi.org/10.1007/s10706-014-9823-y
  37. Yan, J.B., Liew, J.R., Sohel, K.M.A. and Zhang, M.H. (2014), "Push-out tests on J-hook connectors in steel-concrete-steel sandwich structure", Mater. Struct., 47(10), 1693-1714. https://doi.org/10.1617/s11527-013-0145-y
  38. Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater., 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006
  39. Yuvaraj, P., Murthy, A.R., Iyer, N.R., Sekar, S.K. and Samui, P. (2013), "Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams", Eng. Fract. Mech., 98, 29-43. https://doi.org/10.1016/j.engfracmech.2012.11.014

피인용 문헌

  1. Buckling of laminated composite skew plate using FEM and machine learning methods vol.38, pp.1, 2021, https://doi.org/10.1108/ec-08-2019-0346
  2. Flexural behavior of prestressed hybrid wide flange beams with hollowed steel webs vol.38, pp.6, 2021, https://doi.org/10.12989/scs.2021.38.6.691
  3. An optimized machine learning based moment-rotation analysis of steel pallet rack connections vol.79, pp.4, 2021, https://doi.org/10.12989/sem.2021.79.4.499