References
- Abuomar, O., Nouranian, S., King, R., Ricks, T.M. and Lacy, T. E. (2015), "Comprehensive mechanical property classification of vapor-grown carbon nanofiber/vinyl ester nanocomposites using support vector machines", Comput. Mater. Sci., 99, 316-325. https://doi.org/10.1016/j.commatsci.2014.12.029
- Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- Anandavalli, N., Lakshmanan, N., Iyer, N.R., Samuel Knight, G.M. and Rajasankar, J. (2011), "A novel modelling technique for blast analysis of steel-concrete composite panels", Proc. Eng., 14, 2429-2437. https://doi.org/10.1016/j.proeng.2011.07.305
- Anandavalli, N., Lakshmanan, N., Samuel Knight, G.M., Iyer, N.R. and Rajasankar, J. (2012), "Performance of laced steelconcrete composite (LSCC) beams under monotonic loading", Eng. Struct., 41, 177-185. https://doi.org/10.1016/j.engstruct.2012.03.033
- Attard, M.M. and Setunge, S. (1996), "The stress-strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-442.
- Babanajad, S.K., Gandomi, A.H. and Alavi, A.H. (2017), "New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach", Adv. Eng. Softw., 110, 55-68. https://doi.org/10.1016/j.advengsoft.2017.03.011
- Bheemreddy, V., Chandrashekhara, K., Dharani, L.R. and Hilmas, G.E. (2013), "Modeling of fiber pull-out in continuous fiber reinforced ceramic composites using finite element method and artificial neural networks", Comput. Mater. Sci., 79, 663-673. https://doi.org/10.1016/j.commatsci.2013.07.026
- Bowerman, H., Coyle, N. and Chapman, J.C. (2002), "An innovative steel-concrete construction system", Struct. Eng., 80(20), 33-38.
- Cheng, M.Y. and Prayogo, D. (2014), "Symbiotic organisms Search: A new metaheuristic optimization algorithm", Comput. Struct., 139, 98-112. https://doi.org/10.1016/j.compstruc.2014.03.007
- Gajewski, J., Golewski, P. and Sadowski, T. (2017), "Geometry optimization of a thin-walled element for an air structure using hybrid system integrating artificial neural network and finite element method", Compos. Struct., 159, 589-599. https://doi.org/10.1016/j.compstruct.2016.10.007
- Gandomi, A.H. and Alavi, A.H. (2012), "A new multigene genetic programming approach to nonlinear system modeling. Part I: Materials and structural engineering problems", Neur. Comput. Appl., 21(1), 171-187. https://doi.org/10.1007/s00521-011-0734-z
- Guo, Z. and Zang, X. (1987), "Investigation of complete stressdeformation curves for concrete in tension", ACI J., 82(3), 310-24.
- Kumar, M., Mittal, M. and Samui, P. (2013), "Performance assessment of genetic programming (GP) and minimax probability machine regression (MPMR) for prediction of seismic ultrasonic attenuation", Earthq. Sci., 26(2), 147-150. https://doi.org/10.1007/s11589-013-0018-z
- Lanckriet, G.R., Ghaoui, L.E., Bhattacharyya, C. and Jordan, M.I. (2002), "A robust minimax approach to classification", J. Mach. Learn. Res., 3, 555-582.
- Leekitwattana, M. (2011), "Analysis of an alternative topology for steel-concrete-steel sandwich beams incorporating inclined shear connectors", Ph.D. Dissertation, University of Southampton, Southampton, U.K.
- Liew, J.R., Sohel, K.M.A. and Koh, C.G. (2009), "Impact tests on steel-concrete-steel sandwich beams with lightweight concrete core", Eng. Struct., 31(9), 2045-2059. https://doi.org/10.1016/j.engstruct.2009.03.007
- Liew, J.Y.R. and Sohel, K.M.A. (2009), "Lightweight steelconcrete- steel sandwich system with J-hook connectors", Eng. Struct., 31(5), 1166-1178. https://doi.org/10.1016/j.engstruct.2009.01.013
- Luo, Y., Li, A. and Kand, Z. (2012), "Parametric study of bonded steel-concrete composite beams by using finite element analysis", Eng. Struct., 34, 40-51. https://doi.org/10.1016/j.engstruct.2011.08.036
- Mozumder, R.A., Laskar, A.I. and Hussain, M. (2017), "Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines", Constr. Build. Mater., 132, 412-424. https://doi.org/10.1016/j.conbuildmat.2016.12.012
- Prem, P.R., Murthy, A.R. and Verma, M. (2018), "Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC", Constr. Build. Mater., 158, 670-682. https://doi.org/10.1016/j.conbuildmat.2017.10.063
- Prem, P.R., Verma, M., Murthy, A.R., Rajasankar, J. and Bharatkumar, B.H. (2017), "Numerical and theoretical modelling of low velocity impact on UHPC panels", Struct. Eng. Mech., 63(2), 207-215. https://doi.org/10.12989/SEM.2017.63.2.207
- Samui, P. (2012), "Application of relevance vector machine for prediction of ultimate capacity of driven piles in cohesionless soils", Geotech. Geolog. Eng., 30(5), 1261-1270. https://doi.org/10.1007/s10706-012-9539-9
- Samui, P., Hariharan, R. and Karthikeyan, J. (2014), "Determination of stability of slope using Minimax Probability Machine", Georisk: Assess. Manage. Risk Eng. Syst. Geohaz., 8(2), 147-151. https://doi.org/10.1080/17499518.2014.897488
- Searson, D.P., Leahy, D.E. and Willis, M.J. (2010), "GPTIPS: An open source genetic programming toolbox for multigene symbolic regression", Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, March.
- Singh, D., Maheshwari, S., Zaman, M. and Commuri, S. (2018), "Kernel machines and firefly algorithm based dynamic modulus prediction model for asphalt mixes considering aggregate morphology", Constr. Build. Mater., 159, 408-416. https://doi.org/10.1016/j.conbuildmat.2017.10.133
- Strohmann, T. and Grudic, G.Z. (2002), "A formulation for minimax probability machine regression", Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, December.
- Thirumalaiselvi, A., Anandavalli, N., and Rajasankar, J. (2017), "Mechanics based analytical approaches to predict nonlinear behaviour of LSCC beams", Struct. Eng. Mech., 64(3), 311-321. https://doi.org/10.12989/SEM.2017.64.3.311
- Thirumalaiselvi, A., Anandavalli, N., Rajasankar, J. and Iyer, N.R. (2015), "Blast response studies on laced steel-concrete composite (LSCC) slabs", Proceedings of the Advances in Structural Engineering, New Delhi, India, December.
- Thirumalaiselvi, A., Anandavalli, N., Rajasankar, J. and Iyer, N.R. (2016), "Numerical evaluation of deformation capacity of Laced steel-concrete composite beams", Steel Compos. Struct., 20(1), 167-184. https://doi.org/10.12989/scs.2016.20.1.167
- Tipping, M.E. (2001), "Sparse Bayesian learning and the relevance vector machine", J. Mach. Learn. Res., 1, 211-244.
- Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intellig. Manufact.
- Tomlinson, M., Tomlinson, A., Chapman, M.L., Jefferson, A.D. and Wright, H.D. (1989), "Shell composite construction for shallow draft immersed tube tunnels", Proceedings of the ICE International Conference on Immersed Tube Tunnel Techniques, Manchester, U.K., April.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42(1), 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011
- Vapnik, V. (2000), The Nature of Statistical Learning Theory, Springer Science & Business Media, New York, U.S.A.
- Verma, M., Thirumalaiselvi, A. and Rajasankar, J. (2017), "Kernel-based models for prediction of cement compressive strength" Neur. Comput. Appl., 28(1), 1083-1100. https://doi.org/10.1007/s00521-016-2419-0
- Viswanathan, R., Jagan, J., Samui, P. and Porchelvan, P. (2015), "Spatial variability of rock depth using simple kriging, ordinary kriging, RVM and MPMR", Geotech. Geolog. Eng., 33(1), 69-78. https://doi.org/10.1007/s10706-014-9823-y
- Yan, J.B., Liew, J.R., Sohel, K.M.A. and Zhang, M.H. (2014), "Push-out tests on J-hook connectors in steel-concrete-steel sandwich structure", Mater. Struct., 47(10), 1693-1714. https://doi.org/10.1617/s11527-013-0145-y
- Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater., 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006
- Yuvaraj, P., Murthy, A.R., Iyer, N.R., Sekar, S.K. and Samui, P. (2013), "Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams", Eng. Fract. Mech., 98, 29-43. https://doi.org/10.1016/j.engfracmech.2012.11.014
Cited by
- Buckling of laminated composite skew plate using FEM and machine learning methods vol.38, pp.1, 2021, https://doi.org/10.1108/ec-08-2019-0346
- Flexural behavior of prestressed hybrid wide flange beams with hollowed steel webs vol.38, pp.6, 2021, https://doi.org/10.12989/scs.2021.38.6.691
- An optimized machine learning based moment-rotation analysis of steel pallet rack connections vol.79, pp.4, 2021, https://doi.org/10.12989/sem.2021.79.4.499