Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Calim, F.F. (2016), "Dynamic response of curved Timoshenko beams resting on viscoelastic foundation", Soil Dyn. Earthq. Eng., 59(4), 761-774.
- Chen, Y.H. and Huang, Y.H. (2000), "Dynamic stiffness of infinite Timoshenko beam on viscoelastic foundation in moving coordinate", Int. J. Numer. Meth. Eng., 48(1), 285-298.
- Chen, Y.H., Huang, Y.H. and Shih, C.T. (2001), "Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load", J. Sound Vibr., 241(5), 809-824. https://doi.org/10.1006/jsvi.2000.3333
- Fryba, L. (1999), Vibration of Solids and Structures under Moving Loads, Telford, London, U.K.
- Galvin, P., Francois, S., Schevenels, M., Bongini, E., Degrande, G. and Lombaert, G. (2010), "A 2.5 D coupled FE-BE model for the prediction of railway induced vibrations", Soil Dyn. Earthq. Eng., 30(12), 1500-1512. https://doi.org/10.1016/j.soildyn.2010.07.001
- Gan, B.S., Trinh, T.H., Le, T.H. and Nguyen, D.K. (2015), "Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads", Struct. Eng. Mech., 53(5), 981-995. https://doi.org/10.12989/sem.2015.53.5.981
- Hao, H. and Ang, T.C. (1998), "Analytical modeling of trafficinduced ground vibrations", J. Eng. Mech., 124(8), 921-928. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(921)
- Irving, R.S. (2003), Integers, Polynomials, and Rings: A Course in Algebra, Springer Science & Business Media.
- Karahan, M.M. and Pakdemirli, M. (2017), "Vibration analysis of a beam on a nonlinear elastic foundation", Struct. Eng. Mech., 62(2), 171-178. https://doi.org/10.12989/sem.2017.62.2.171
- Kargarnovin, M. and Younesian, D. (2004), "Dynamics of timoshenko beams on Pasternak foundation under moving load", Mech. Res. Commun., 31(6), 713-723. https://doi.org/10.1016/j.mechrescom.2004.05.002
- Kausel, E. and Roesset, J.M. (1992), "Frequency domain analysis of undamped systems", J. Eng. Mech., 118(4), 721-734. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:4(721)
- Kenney, J. (1954), "Steady-state vibrations of beam on elastic foundation for moving load", J. Appl. Mech., 21(4), 359-364.
- Kim, S.M. (2005), "Stability and dynamic response of Rayleigh beam-columns on an elastic foundation under moving loads of constant amplitude and harmonic variation", Eng. Struct., 27(6), 869-880. https://doi.org/10.1016/j.engstruct.2005.01.009
- Kim, S.M. and Cho, Y.H. (2006), "Vibration and dynamic buckling of shear beam-columns on elastic foundation under moving harmonic loads", Int. J. Sol. Struct., 43(3), 393-412. https://doi.org/10.1016/j.ijsolstr.2005.06.025
- Luo, W.L. and Xia, Y. (2017), "Vibration of infinite timoshenko beam on Pasternak foundation under vehicular load", Adv. Struct. Eng., 20(5), 24-34.
- Luo, W.L., Xia, Y. and Weng, S. (2005), "Vibration of timoshenko beam on hysteretically damped elastic foundation subjected to moving load", Sci. Chin. Phys. Mech., 58(8), 1-9.
- Luo, W.L., Xia, Y. and Zhou, X.Q. (2016), "A closed-form solution to a viscoelastically supported Timoshenko beam under harmonic line load", J. Sound Vibr., 369(5), 109-118. https://doi.org/10.1016/j.jsv.2016.01.011
- Mathews, P.M. (1958), "Vibrations of a beam on elastic foundation", J. Appl. Maths. Mech., 38(3-4), 105-115.
- Shmakov, S.L. (2011), "A universal method of solving quartic equations", Int. J. Pure Appl. Math., 71(2), 251-259.
- Sun, L. (2001), "A closed-form solution of a Bernoulli-Euler beam on a viscoelastic foundation under harmonic line loads", J. Sound Vibr., 242(4), 619-627. https://doi.org/10.1006/jsvi.2000.3376
- Sun, L. (2002), "A closed-form solution of beam on viscoelastic subgrade subjected to moving loads", Comput. Struct., 80(1), 1-8. https://doi.org/10.1016/S0045-7949(01)00162-6
- Sun, L. (2003), "An explicit representation of steady state response of a beam on an elastic foundation to moving harmonic line loads", Int. J. Numer. Anal. Met., 27(1), 69-84. https://doi.org/10.1002/nag.263