DOI QR코드

DOI QR Code

사이징제에 따른 유리섬유/폴리디사이클로펜타디엔 복합재료의 계면물성 및 기계적 물성 평가

Evaluation of Interfacial and Mechanical Properties of GF/p-DCPD Composites with Different Sizing Agents

  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Ha-Seung (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Baek, Yeong-Min (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 투고 : 2018.01.22
  • 심사 : 2018.04.28
  • 발행 : 2018.04.30

초록

순수한 유리섬유와 두 가지 사이징제가 코팅된 유리섬유/폴리디사이클로펜타디엔(p-DCPD) 복합재료의 계면물성 및 상온($25^{\circ}C$)과 저온($-20^{\circ}C$)에서의 기계적 물성을 평가하였다. 섬유의 사이징제를 용출하기 위하여 아세톤을 이용하였고, 용액을 건조 후 각각의 용출물에 대하여 적외선 분광 분석을 통해 비교하였다. 동적접촉각 측정을 통하여 섬유와 p-DCPD의 표면에너지를 분석하였고 이를 통하여 접착일을 계산하였다. 서로 다른 유리섬유의 기계적 물성을 알아보기 위하여 단섬유 인장실험을 진행하였고, 단섬유와 p-DCPD의 계면적 물성을 알아보기 위하여 반복인장하중실험을 진행하였다. 상온 및 저온에서의 기계적 물성을 알아보기 위하여 인장, 굴곡, 아이조드 충격실험을 진행하였다. 실험결과 표면의 인자에 따라 계면 및 기계적 물성이 달라지는 것을 볼 수 있었다.

Interfacial and mechanical properties of neat and two sizing agents coated glass fiber (GF)/polydicyclopentadiene (p-DCPD) composites were evaluated at room and low temperatures, $25^{\circ}C$ and $-20^{\circ}C$. Sizing agents of GFs were extracted using acetone and compared via FT-IR. Surface energy and work of adhesion between GFs and p-DCPD were calculated by dynamic contact angle measurement. Mechanical properties of different GFs were determined using single fiber tensile test and interfacial properties of single GF reinforced DCPD strip were determined using cyclic loading tensile test. Mechanical properties of GFs/p-DCPD composites at room and low temperatures were determined using tensile, compressive, and Izod impact tests. Interfacial and mechanical properties were different with sizing agents of GFs and the optimized condition of sizing agent was found.

키워드

참고문헌

  1. Yinghui, H., Augustus, W.L., Xiaochen, L., and Steven, R.N., "Hygrothermal Aging Effects on Fatigue of Glass Fiber/polydicyclopentadiene Composites," Polymer Degradation and Stability, Vol. 110, 2014, pp. 464-472. https://doi.org/10.1016/j.polymdegradstab.2014.10.018
  2. Xia, S., Jong, K.L., and Michael, R.K., "Influence of Cross-link Density on the Properties of ROMP Thermosets," Polymer, Vol. 50, 2009, pp. 1264-1269. https://doi.org/10.1016/j.polymer.2009.01.021
  3. Jeong, W., and Kessler, M.R., "Toughness Enhancement in ROMP Functionalized Carbonnanotube/polydicyclopentadi- ene Composites", Chemical Materials, Vol. 20, 2008, pp. 7060-7080. https://doi.org/10.1021/cm8020947
  4. Davidson, T.A., and Wagener, K.B., "The Polymerization of Dicyclopentadiene: An Investigation of Mechanism", Journal of Molecular Catalysis A: Chemical, Vol. 133, 1998, pp. 67-74. https://doi.org/10.1016/S1381-1169(98)00091-0
  5. Bekas, D.G., Tsirka, K., Baltzis, D., and Paipetis, A.S., "Self-heal- ing Materials: A Review of Advances in Materials, Evaluation, Characterization and Monitoring Techniques", Composites Part B, Vol. 87, 2016, pp. 92-119. https://doi.org/10.1016/j.compositesb.2015.09.057
  6. Sheng, Z., Lee, J.K., and Kessles, M.R., "Influence of Cross-link Density on the Properties of ROMP Thermosets", Polymer, Vol. 50, 2009, pp. 1264-1269. https://doi.org/10.1016/j.polymer.2009.01.021
  7. Allaert, B., Dieltiens, N., Ledoux, N., Vercaemst, C., Voort, P.V.D., and Stevens, C.V., "Synthesis and Activity for ROMP of Bidentate Schiff Base Substituted Second Generation Grubbs Catalysts", Journal of Molecular Catalysis A: Chemical, Vol. 260, 2006, pp. 221-226. https://doi.org/10.1016/j.molcata.2006.07.006
  8. Kwon, D.J., Shin, P.S., Kim, J.H., Park, H.S., Baek, Y.M., DeVris, K.L., and Park, J.M., "Reinforcing Effects of Glass Fiber/p-DCPD with Fiber Concentrations, Types, Lengths and Surface Treatment", Composites Part B, Vol.123, 2017, pp. 74-80. https://doi.org/10.1016/j.compositesb.2017.05.020
  9. Tang, L.G., and Kardos, J.L., "A Review of Methods for Improv- ing the Interfacial Adhesion between Carbon Fiber and Poly- mer Matrix", Polymer Composites, Vol. 18, 1997, pp. 100-113. https://doi.org/10.1002/pc.10265
  10. Yuan, H., Zhang, S., Lu, C., He, S., and An, F., "Improved Inter- facial Adhesion in Carbon Fiber/polyether Sulfone Composites Through an Organic Solvent-free Polyamic Acid Sizing", Applied Surface Science, Vol. 279, 2013, pp. 279-284. https://doi.org/10.1016/j.apsusc.2013.04.085
  11. Sharma, M., Gao, S., Marder, E., Sharma, H., Wei, L., and Bijwe, J., "Carbon Fiber Surface Sand Composite Interphases", Composites Science and Technology, Vol. 102 , 2014, pp. 35-50. https://doi.org/10.1016/j.compscitech.2014.07.005
  12. Hua, Y., Wang, C., Shan, Z., and Lin, X., "Effect of Surface Modification on Carbon Fiber and iTs Reinforced Phenolic Matrix Composite", Applied Surface Science, Vol. 259, 2012, pp. 288-293. https://doi.org/10.1016/j.apsusc.2012.07.034
  13. Ishifune, M., Suzuki, R., Mima, Y., Uchida, K., Yamashita, N., and Kashimura, S., "Novel Electrochemical Surface Modifica- tion Method of Carbon Fiber and Its Utilization to the Prepa- ration of Functional Electrode", Electrochimica Acta, Vol. 51, 2005, pp. 14-22. https://doi.org/10.1016/j.electacta.2005.04.002
  14. Paredes, J.I., Alonso, A., and Tascon, J.M.D., "Oxygen Plasma Modification of Submicron Vapor Grown Carbon Fibers as Studied by Scanning Tunneling Microscopy", Carbon, Vol. 40, 2002, pp. 1101-1108. https://doi.org/10.1016/S0008-6223(01)00255-X
  15. Xu, Z., Huang, Y., Zhang, C., and Chen, G., "Influence of Rare Earth Treatment on Interfacial Properties of Carbon Fiber/ epoxy Composites", Materials Science and Engineering A, Vol. 444, 2007, pp. 170-177. https://doi.org/10.1016/j.msea.2006.08.079
  16. Ma, Q., Gu, Y., Li, M., Wang, S., and Zhang, Z., "Effects of Surface Treating Methods of High-strength Carbon Fibers on Interfacial Properties of Epoxy Resin Matrix Composite", Applied Surface Science, Vol. 379, 2016, pp. 199-205. https://doi.org/10.1016/j.apsusc.2016.04.075
  17. Xu, B., Wang, X.S., and Lu, Y., "Surface Modification of Poly Acrylonitrile-based Carbon Fiber and Its Interaction with Imide", Applied Surface Science, Vol. 253, 2006, pp. 2695-2701. https://doi.org/10.1016/j.apsusc.2006.05.044
  18. Park, J.M., Kim, J.W., and Yoon, D.J., "Interfacial Evaluation and Microfailure Mechanisms of Single Carbon Fiber/bismaleimide (BMI) Composites by Tensile and Compressive Fragmentation Tests and Acoustic Emission", Composites Science and Technology, Vol. 62, 2002, pp. 743-756. https://doi.org/10.1016/S0266-3538(02)00050-7
  19. Tanoglu, M., Ziaee, S., Mcknight, S.H., Palmese, G.R., and Gillespie, J.W. Jr., "Investigation of Properties of Fiber/matrix Interphase Formed due to the Glass Fiber Sizings", Journal of Material Science, Vol. 36, 2001, pp. 3041-3053. https://doi.org/10.1023/A:1017979126129
  20. Owen, D.K., and Wendth, R.C., "Estimation of the Surface Free Energy of Polymer", Journal of Applied Polymer Science, Vol. 13, 1969, pp. 1741-1747. https://doi.org/10.1002/app.1969.070130815