DOI QR코드

DOI QR Code

An efficient procedure for lightweight optimal design of composite laminated beams

  • Ho-Huu, V. (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University) ;
  • Vo-Duy, T. (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University) ;
  • Duong-Gia, D. (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University) ;
  • Nguyen-Thoi, T. (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University)
  • Received : 2017.08.17
  • Accepted : 2018.03.06
  • Published : 2018.05.10

Abstract

A simple and efficient numerical optimization approach for the lightweight optimal design of composite laminated beams is presented in this paper. The proposed procedure is a combination between the finite element method (FEM) and a global optimization algorithm developed recently, namely Jaya. In the present procedure, the advantages of FEM and Jaya are exploited, where FEM is used to analyze the behavior of beam, and Jaya is modified and applied to solve formed optimization problems. In the optimization problems, the objective aims to minimize the overall weight of beam; and fiber volume fractions, thicknesses and fiber orientation angles of layers are selected as design variables. The constraints include the restriction on the first fundamental frequency and the boundaries of design variables. Several numerical examples with different design scenarios are executed. The influence of the design variable types and the boundary conditions of beam on the optimal results is investigated. Moreover, the performance of Jaya is compared with that of the well-known methods, viz. differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). The obtained results reveal that the proposed approach is efficient and provides better solutions than those acquired by the compared methods.

Keywords

Acknowledgement

Supported by : Vietnam National Foundation for Science and Technology Development (NAFOSTED)

References

  1. Altenbach, H., Altenbach, J. and Kissing, W. (2004), Mechanics of Composite Structural Elements, (1st Edn.), Springer, Heidelberg, Germany.
  2. Apalak, Z.G., Apalak, M.K., Ekici, R. and Yildirim, M. (2011), "Layer optimization for maximum fundamental frequency of rigid point-supported laminated composite plates", Polym. Compos., 32(12), 1988-2000. DOI: 10.1002/pc.21230
  3. Apalak, M.K., Karaboga, D. and Akay, B. (2013), "The Artificial Bee Colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates", Eng. Optim., 46(3), 420-437. DOI: 10.1080/0305215X.2013.776551
  4. Cho, H.-K. (2013), "Design optimization of laminated composite plates with static and dynamic considerations in hygrothermal environments", Int. J. Precis. Eng. Manuf., 14(8), 1387-1394. DOI: 10.1007/s12541-013-0187-7
  5. Deb, K., Pratab, S., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comput., 6, 182-197. DOI: 10.1109/4235.996017
  6. Fan, H.-T., Wang, H. and Chen, X.-H. (2016), "An optimization method for composite structures with ply-drops", Compos. Struct., 136, 650-661. DOI: http://dx.doi.org/10.1016/j.compstruct.2015.11.003
  7. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, (1st Edn.), Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
  8. Hajmohammad, M.H., Salari, M., Hashemi, S.A. and Esfe, M.H. (2013), "Optimization of stacking sequence of composite laminates for optimizing buckling load by neural network and genetic algorithm", Indian J. Sci. Technol., 6(8), 5070-5077.
  9. Ho-Huu, V., Do-Thi, T.D., Dang-Trung, H., Vo-Duy, T. and Nguyen-Thoi, T. (2016), "Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method", Compos. Struct., 146, 132-147. DOI: http://dx.doi.org/10.1016/j.compstruct.2016.03.016
  10. Hwang, S.-F., Hsu, Y.-C. and Chen, Y. (2014), "A genetic algorithm for the optimization of fiber angles in composite laminates", J. Mech. Sci. Technol., 28(8), 3163-3169. DOI: 10.1007/s12206-014-0725-y
  11. Jing, Z., Fan, X. and Sun, Q. (2015), "Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm", Compos. Struct., 121, 225-236. DOI: 10.1016/j.compstruct.2014.10.031
  12. Jones, R.M.(1998), Mechanics of Composite Materials, (2nd Edition), CRC Press.
  13. Kaveh, A. and Zolghadr, A. (2014), "Democratic PSO for truss layout and size optimization with frequency constraints", Comput. Struct., 130, 10-21. DOI: http://dx.doi.org/10.1016/j.compstruc.2013.09.002
  14. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Volume 4, Perth, Australia, 27 November-1 December, pp. 1942-1948. DOI: 10.1109/ICNN.1995.488968
  15. Le-Anh, L., Nguyen-Thoi, T., Ho-Huu, V., Dang-Trung, H. and Bui-Xuan, T. (2015), "Static and frequency optimization of folded laminated composite plates using an adjusted Differential Evolution algorithm and a smoothed triangular plate element", Compos. Struct., 127, 382-394. DOI: 10.1016/j.compstruct.2015.02.069
  16. Liu, Q. (2015), "Analytical sensitivity analysis of eigenvalues and lightweight design of composite laminated beams", Compos. Struct., 134, 918-926. DOI: 10.1016/j.compstruct.2015.09.002
  17. Liu, Q. (2016), "Exact sensitivity analysis of stresses and lightweight design of Timoshenko composite beams", Compos. Struct., 143, 272-286. DOI: http://dx.doi.org/10.1016/j.compstruct.2016.02.028
  18. Liu, Q. and Paavola, J. (2015), "Lightweight design of composite laminated structures with frequency constraint", Compos. Struct., 156, 356-360. DOI: 10.1016/j.compstruct.2015.08.116
  19. Qatu, M.S. (1992), "In-plane vibration of slightly curved laminated composite beams", J. Sound Vib., 159(2), 327-338. DOI: http://dx.doi.org/10.1016/0022-460X(92)90039-Z
  20. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Comput. Des., 43(3), 303-315. DOI: http://dx.doi.org/10.1016/j.cad.2010.12.015
  21. Reguera, F. and Cortinez, V.H. (2016), "Optimal design of composite thin-walled beams using simulated annealing", Thin-Wall. Struct., 104, 71-81. DOI: http://dx.doi.org/10.1016/j.tws.2016.03.001
  22. Roque, C.M.C., Martins, P.A.L.S., Ferreira, A.J.M. and Jorge, R.M.N. (2016), "Differential evolution for free vibration optimization of functionally graded nano beams", Compos. Struct., 156, 29-34. DOI: http://dx.doi.org/10.1016/j.compstruct.2016.03.052
  23. Sadr, M.H. and Bargh, H.G. (2012), "Optimization of laminated composite plates for maximum fundamental frequency using Elitist-Genetic algorithm and finite strip method", J. Glob. Optim., 54(4), 707-728. DOI: 10.1007/s10898-011-9787-x
  24. Storn, R. and Price, K. (1997), "Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces", J. Glob. Optim., 11(4), 341-359. DOI: 10.1023/A:1008202821328
  25. Topal, U. (2012), "Frequency optimization of laminated composite plates with different intermediate line supports", Sci. Eng. Compos. Mater., 19, 295-306. DOI: 10.1515/secm-2012-0004
  26. Tsiatas, G.C. and Charalampakis, A.E. (2017), "Optimizing the natural frequencies of axially functionally graded beams and arches", Compos. Struct., 160, 256-266. DOI: http://dx.doi.org/10.1016/j.compstruct.2016.10.057
  27. Venkata Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Ind. Eng. Comput., 7(1), 19-34. DOI: 10.5267/j.ijiec.2015.8.004
  28. Venkata Rao, R. and Waghmare, G.G. (2016), "A new optimization algorithm for solving complex constrained design optimization problems", Eng. Optim., 49(1), 60-83. DOI: 10.1080/0305215X.2016.1164855
  29. Vo-Duy, T., Duong-Gia, D., Ho-Huu, V., Vu-Do, H.C. and Nguyen-Thoi, T. (2017a), "Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm", Compos. Struct., 168, 498-500. DOI: http://dx.doi.org/10.1016/j.compstruct.2017.02.038
  30. Vo-Duy, T., Ho-Huu, V., Do-Thi, T.D., Dang-Trung, H. and Nguyen-Thoi, T. (2017b), "A global numerical approach for lightweight design optimization of laminated composite plates subjected to frequency constraints", Compos. Struct., 159, 646-655. DOI: 10.1016/j.compstruct.2016.09.059.

Cited by

  1. Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.853
  2. Optimization of a composite beam for high-speed railroads vol.37, pp.4, 2018, https://doi.org/10.12989/scs.2020.37.4.493