DOI QR코드

DOI QR Code

Effect of Active Species Generated from Flexible Plasma Patch on Polysaccharide Surface

플렉서블 플라즈마 패치에서 발생되는 활성종이 다당류 표면에 미치는 영향

  • Lee, Yu Ri (Surface Technology Division, Korea Institute of Materials Science) ;
  • Lee, Seunghun (Surface Technology Division, Korea Institute of Materials Science) ;
  • Kim, Do-Geun (Surface Technology Division, Korea Institute of Materials Science)
  • 이유리 (재료연구소 표면기술연구본부 나노표면연구실) ;
  • 이승훈 (재료연구소 표면기술연구본부 나노표면연구실) ;
  • 김도근 (재료연구소 표면기술연구본부 나노표면연구실)
  • Received : 2018.04.11
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

Plasma devices such as jets, pencils, and torches have been developed as new tools that help penetration of target agents and applied to plasma medicine. However, these devices cannot be used in a large area. Therefore, we introduced a flexible plasma device, which can be treated of large area and designed as bendable plasma. In additional, in vitro model based on agarose gel was prepared that can be show effectiveness in the depth of penetration. Plasma treatment conditions such as power, time and distance can be optimized on the agarose gel wound model. The chemical structure of changed polysaccharides was predicted due to reactive excited atoms and molecules, UV photons, charged particles and reactive oxygen and nitrogen species (RONS).

Keywords

References

  1. E. Larraneta, R. E. M. Lutton, A. D. Woolfson, R. F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development, Mater. Sci. Eng. R. Rep. 104 (2016) 1-32. https://doi.org/10.1016/j.mser.2016.03.001
  2. M. B. Brown, Dermal and transdermal drug delivery systems: current and future prospects, Drug Deliv. 13 (2006) 175-187. https://doi.org/10.1080/10717540500455975
  3. H. Marwah, T. Garg, A. K. Goyal, G. Rath, Permeation enhancer strategies in transdermal drug delivery, Drug Deliv. 23 (2016) 564-578. https://doi.org/10.3109/10717544.2014.935532
  4. A. I. Metelitsa, T. S. Alster, Fractionated laser skin resurfacing treatment complications: A review, Dermatol. Surg. 36 (2010) 299-306. https://doi.org/10.1111/j.1524-4725.2009.01434.x
  5. J. J. Escobar-Chavez, D. Bonilla-Martinez, M. A. Villegas-Gonzalez, E. M. Trinidad, M. Casas-Alancaster, A. L. Revilla-Vazquez, Microneedles: A valuable physical enhancer to increase transdermal drug delivery, J. Clin. Pharmacol. 51 (2011) 964-677. https://doi.org/10.1177/0091270010378859
  6. T. von Woedtke, S. Reuter, K. Masur, K. D. Weltmann, Plasma for medicine, Phys. Rep. 530 (2013) 291-320. https://doi.org/10.1016/j.physrep.2013.05.005
  7. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, A. Fridman, Applied plasma medicine, Plasma Process. Polym. 15 (2008) 503-533.
  8. D. Dobrynin, G. Fridman, G. Friedman, A. Fridman, Deep penetration into tissues of reactive oxygen species generated in floating electrode dielectric barrier discharge (FE-DBD): An in vitro agarose gel model mimicking an open wound, Plasma Med. 2 (2012) 71-83. https://doi.org/10.1615/PlasmaMed.2013006218
  9. J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu, S. Karrer, Plasma medicine: possible application in dermatology, J. Dtsch. Dermatol. Ges. 8 (2010) 968-976.
  10. K. Takenaka, Y. Setsuhara, Plasma interactions with organic materals in liquid through plasma/liquid interface, Jpn. J. Appl. Phys. 52 (2013) 11NE04-1-5. https://doi.org/10.7567/JJAP.52.11NE04
  11. C. V. Suschek, C. Oplander, The application of cold atmospheric plasma in medicine: The potential role of nitric oxide in plasma-induced effects, Clin. Plasma Med. 4 (2016) 1-8. https://doi.org/10.1016/j.cpme.2016.05.001
  12. D. B. Graves, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology, J. Phys. D: Appl. Phys. 45 (2012) 363001 (42 pp).
  13. J. Kim, K. H. Choi, Y. Kim, B. J. Park, G. Cho, Wearable plasma pads for biomedical applications, Appl. Sci. 7 (2017) 1308 (13 pp) https://doi.org/10.3390/app7121308
  14. H. Kato, T. Ishida, Development of an agar phantom adaptable for simulation of various tissues in the range 5-40 MHz, Phys. Med. Biol. 32(1987) 221-226. https://doi.org/10.1088/0031-9155/32/2/006
  15. D. Dobrynin, A. Wu, S. Kalghatgi, S. Park, N. Shainsky, K. Wasko, E. Dumani, R. Ownbey, S. Joshi, R. Sensenig, A. D. Brooks, Live pig skin tissue and wound toxicity of cold plasma treatment, Plasma Med. 1 (2011) 93-108. https://doi.org/10.1615/PlasmaMed.v1.i1.80
  16. D. Dobrynin, G. Fridman, G. Friedman, A. Fridman, Physical and biological mechanisms of direct plasma interaction with living tissue, New J. Phys. 11 (2009) 115020 (26pp). https://doi.org/10.1088/1367-2630/11/11/115020
  17. O. Lademann, H. Richter, A. Kramer, A. Patzelt, M. C. Meinke, C. Graf, Q. Gao, E. Korotianskiy, E. Ruhl, K. D. Weltmann, J. Lademann, S. Koch, Stimulation of the penetration of particles into the skin by plasma tissue interaction, Laser Phys. Lett. 8 (2011) 758-764. https://doi.org/10.1002/lapl.201110055
  18. J. Duan, D. L. Kasper, Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species, Glycobiology. 21 (2011) 401-409. https://doi.org/10.1093/glycob/cwq171
  19. T. Vasilieva, D. Chuhchin, S. Lopatin, V. Varlamov, A. Sigarev, M. Vasiliev, Chitin and cellulose processing in low-temperature electron beam plasma, Molecules. 22 (2017) 1908 (1-15). https://doi.org/10.3390/molecules22111908