DOI QR코드

DOI QR Code

Preparation of Sintering Aid for Li7La3Zr2O12 Solid Electrolyte by Heat-treatment of Polymeric Precursors Containing Li and B

Li과 B이 포함된 폴리머 전구체의 열처리에 의한 Li7La3Zr2O12 고체전해질의 소결조제 합성

  • Shin, Ran-Hee (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 신란희 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 류성수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2018.04.24
  • Accepted : 2018.04.27
  • Published : 2018.04.28

Abstract

In this study, the compound $Li_3BO_3$ (LBO) is intended to be prepared by a polymeric complex method as a sintering aid for the densification of $Li_7La_3Zr_2O_{12}$ (LLZ) solid electrolyte. A polymeric precursor containing Li and B is heat-treated in an air atmosphere at a temperature range between $600^{\circ}C$ and $800^{\circ}C$. Instead of LBO, the compound $Li_{2+x}C_{1-x}B_xO_3$ (LCBO) is unexpectedly synthesized after a heat-treatment of $700^{\circ}C$. The effect of LCBO addition on sintering behavior and ion conductivity of LLZ is studied. It is found that the LCBO compound could lead to significant improvements in the densification and ionic conductivity of LLZ compared to pure LLZ. After sintering at $1100^{\circ}C$, the density of the LLZ-12wt%LBO composite is $3.72g/cm^3$, with a high Li-ion conductivity of $1.18{\times}10^{-4}Scm^{-1}$ at $28^{\circ}C$, while the pure LLZ specimen had a densify of $2.98g/cm^3$ and Li-ion conductivity of $5.98{\times}10^{-6}Scm^{-1}$.

Keywords

References

  1. P.Knauth : Solid State Ionics, 180 (2009) 911. https://doi.org/10.1016/j.ssi.2009.03.022
  2. J. W. Fergus : J.Power Sources, 195 (2010) 4554. https://doi.org/10.1016/j.jpowsour.2010.01.076
  3. Y. Inaguma, L.Q. Chen, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara : Solid State Commun., 86 (1993) 689. https://doi.org/10.1016/0038-1098(93)90841-A
  4. Y. Inaguma, L.Q. Chen, M. Itohand T. Nakamura : Solid State Ionics, 70 (1994) 196.
  5. G. Y. Adachi, N. Imanaka and H. Aono : Adv. Mater., 8 (1996) 127. https://doi.org/10.1002/adma.19960080205
  6. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Y. Adachi : J. Electrochem. Soc., 136 (1989) 590. https://doi.org/10.1149/1.2096693
  7. K. Arbi, J. M. Rojo and J. Sanz : J. Eur. Ceram. Soc., 27 (2007) 4215. https://doi.org/10.1016/j.jeurceramsoc.2007.02.118
  8. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi : Solid State Ionics, 47, (1991) 257. https://doi.org/10.1016/0167-2738(91)90247-9
  9. R. Kanno, T. Hata, Y. Kawamoto and M. Irie : Solid State Ionics, 130 (2000) 97. https://doi.org/10.1016/S0167-2738(00)00277-0
  10. M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata, N. Sonoyama and Y. Kawamoto : J. Solid State Chem., 168 (2002) 140. https://doi.org/10.1006/jssc.2002.9701
  11. V. Thangadurai, H. Kaack and W.J.F. Weppner : J. Am. Ceram. Soc., 86 (2003) 437. https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
  12. V. Thangadurai and W.J.F. weppner : Adv.Funct. Mater., 15 (2005) 107. https://doi.org/10.1002/adfm.200400044
  13. R. Murugan, W. Weppner, P. Schmid-Beurmann and V. Thangadurai : Mater. Res. Bull., 43 (2008) 2579. https://doi.org/10.1016/j.materresbull.2007.10.035
  14. R. Murugan, V. Thangadurai and W. Weppner : Angew. Chem. Int., 46 (2007) 7778. https://doi.org/10.1002/anie.200701144
  15. E. J. Cussen : Chem. Commun., 4 (2006) 412.
  16. M. Huang, T. Liu, Y. Deng, H. Geng, Y. Shen, Y. Lin and W.Nan : Solid State Ionics, 204 (2011) 41.
  17. Y. -H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe and J. Sakamoto : J.Mater.Sci., 47 (2012) 5970. https://doi.org/10.1007/s10853-012-6500-5
  18. K. Tadanaga, R. Takano, T. Ichinose, S. Mori, A. Hayashi and M. Tatsumisago : Electrochem. Commun., 33 (2013) 51. https://doi.org/10.1016/j.elecom.2013.04.004
  19. R. Takano, K. Tadanaga, A. Hayashi and M. Tatsumisago : Solid State Ionics, 255 (2014) 104. https://doi.org/10.1016/j.ssi.2013.12.006
  20. S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita and T. Asaoka : J.Power Sources, 238 (2013) 53. https://doi.org/10.1016/j.jpowsour.2013.02.073
  21. N. Janani, C. Deviannapoorani, L. Dhivya and R. Murugan : RSC Adv., 4 (2014) 51228. https://doi.org/10.1039/C4RA08674K
  22. Y. Li, Y. Cao, X. Guo, Solid State Ionics.: 253 (2013) 76. https://doi.org/10.1016/j.ssi.2013.09.005
  23. N. Janani, S. Ramakumar, S. Kannan and R. Murugan : J. Am. Ceram. Soc., 98 (2015) 2039. https://doi.org/10.1111/jace.13578
  24. N. C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi and K. Tadanaga : Solid State Ionics, 285 (2016) 6. https://doi.org/10.1016/j.ssi.2015.06.015
  25. N. C. Rosero-Navarro, A. Miura, M. Higuchi and K. Tadanga : J. Electron. Mater., 46 (2017) 497. https://doi.org/10.1007/s11664-016-4924-4
  26. R. H. Shin, S. I. Son, Y. S. Han, Y. D. Kim, H. T. Kim, S. S. Ryu and W. Pan : Solid State Ionics, 301 (2017) 10. https://doi.org/10.1016/j.ssi.2017.01.005
  27. M. Kakihana: J. Sol-Gel Sci. Technol., 6 (1996) 7. https://doi.org/10.1007/BF00402588
  28. P. A. Lessong : Am. Ceram. Bull., 68 (1989) 1002.
  29. T. Okumura, T. Takeuchi, and H. Kobayashi : Solid State Ionics, 288 (2016) 248. https://doi.org/10.1016/j.ssi.2016.01.045
  30. T. Okumura, T. Takeuchi, and H. Kobayashi : J. Ceram. Soc. Jpn., 125 (2017) 276. https://doi.org/10.2109/jcersj2.16276