DOI QR코드

DOI QR Code

A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process

SLM 공정으로 제작된 SKD61 공구강의 조형 특성에 관한 연구

  • Yun, Jaecheol (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Choe, Jungho (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Ki-Bong (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Sangsun (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Dong-Yeol (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Yong-Jin (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Chang-Woo (Metal 3D Printing Convergence Research Team, Korea Institute of Machinery & Materials (KIMM)) ;
  • Yu, Ji-Hun (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS))
  • 윤재철 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 최중호 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 김기봉 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 양상선 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 양동열 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 김용진 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 이창우 (한국기계연구원, M3P 융합연구단) ;
  • 유지훈 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부)
  • Received : 2018.04.03
  • Accepted : 2018.04.26
  • Published : 2018.04.28

Abstract

In this study, two types of SKD61 tool-steel samples are built by a selective laser melting (SLM) process using the different laser scan speeds. The characteristics of two kinds of SKD61 tool-steel powders used in the SLM process are evaluated. Commercial SKD61 tool-steel power has a flowability of 16.68 sec/50 g and its Hausner ratio is calculated to be 1.25 by apparent and tapped density. Also, the fabricated SKD61 tool steel powder fabricated by a gas atomization process has a flowability of 21.3 sec/50 g and its Hausner ratio is calculated to be 1.18. Therefore, we confirmed that the two powders used in this study have excellent flowability. Samples are fabricated to measure mechanical properties. The highest densities of the SKD61 tool-steel samples, fabricated under the same conditions, are $7.734g/cm^3$ (using commercial SKD61 powder) and $7.652g/cm^3$ (using fabricated SKD61 powder), measured with Archimedes method. Hardness is measured by Rockwell hardness testing equipment 5 times and the highest hardnesses of the samples are 54.56 HRC (commercial powder) and 52.62 HRC (fabricated powder). Also, the measured tensile strengths are approximately 1,721 MPa (commercial SKD61 powder) and 1,552 MPa (fabricated SKD61 powder), respectively.

Keywords

References

  1. A. Ladewig, G. Schlick, M. Fisser, V. Schulze and U. Glatzel: Additive Manuf., 10 (2016) 1. https://doi.org/10.1016/j.addma.2016.01.004
  2. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond and W.E. King: Acta Mater., 114 (2016) 33. https://doi.org/10.1016/j.actamat.2016.05.017
  3. B. Cheng, S. Shrestha and K. Chou: Addtive Manuf., ADDMA 90 (2016) 1.
  4. W. Kim, M. Hong, Y. Kim, C. H. Suh, J. Lee, S. Lee and J. H. Sung: J. Welding and Joining(JWJ)., 32 (2014) 10. https://doi.org/10.5781/JWJ.2014.32.4.10
  5. T. Wohlers: Wohlers Associates Inc., USA, 28 (2014).
  6. P. Feng, X. Meng, J.-F. Chen and L. Ye: Construct Build Mater., 93 (2015) 486. https://doi.org/10.1016/j.conbuildmat.2015.05.132
  7. L. Parry, I.A. Ashcroft and R.D. Wildman: Additive Manuf., 12 (2016) 1. https://doi.org/10.1016/j.addma.2016.05.014
  8. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann: Acta Mater., 117 (2016) 371. https://doi.org/10.1016/j.actamat.2016.07.019
  9. J. Choe, J. Yun, D-Y. Yang, S. Yang, J-H. Yu, C-W. Lee, and Y-J. Kim: J. Korean Powder Metall., 24 (2017) 187. https://doi.org/10.4150/KPMI.2017.24.3.187
  10. R.O. GREY and J.K. BEDDOW: Powder Tech., 2 (1968/ 69) 323.
  11. C.J. Etti, Y.A. Yusof, N.L. Chin and S.M. Tahir: Agric. Agric. Sci. Procedia., 2 (2014) 120.
  12. D. Geldart, E.C. Abdullah, A. Hassnapour, L.C. Nwoke and I. Wouters: China Particuology, 4 (2006) 104. https://doi.org/10.1016/S1672-2515(07)60247-4
  13. J. Yun, J. Choe, H. Lee, K-B. Kim, S. Yang, D-Y. Yang, Y-J. Kim, C-W. Lee, and J-H. Yu: J. Korean Powder Metall., 24 (2017) 195. https://doi.org/10.4150/KPMI.2017.24.3.195
  14. L.J. Jallo, M. Schoenitz, E.L. Dreizin, R.N. Dave and C.E. Johnson: Powder Tech., 204 (2010) 63. https://doi.org/10.1016/j.powtec.2010.07.017
  15. H.Y. Jung, S.J. Choi, K.G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kuhn, D.H. Kim, K.B. Kim and J. Eckert: Mater. Des., 86 (2015) 703. https://doi.org/10.1016/j.matdes.2015.07.145
  16. A.J. Pinkerton and L. Li: Int. J. Adv. Manuf. Technol., 25 (2005) 471. https://doi.org/10.1007/s00170-003-1844-2
  17. Y. Meng, S. Sugiyama and J. Yanagimoto: J. Mater. Pro- cess. Tech., 212 (2012) 1731. https://doi.org/10.1016/j.jmatprotec.2012.04.003
  18. E.C. Abdullah and D. Geldart: Powder Tech., 102 (1999) 151. https://doi.org/10.1016/S0032-5910(98)00208-3
  19. D. Geldart, E.C. Abdullah and A. Verlinden: Powder Tech., 190 (2009) 70. https://doi.org/10.1016/j.powtec.2008.04.089
  20. G. Telasang, J.D. Majumdar, G. Padmanabham, M. Tak and I. Manna: Surf. Coat. Tech., 258 (2014) 1108. https://doi.org/10.1016/j.surfcoat.2014.07.023
  21. G. Petzow: Metallographic Etching, R. Koch and James A. Nelson (Ed.), AMERICAN SOCIETY FOR METALS, Metals Park (1978) 62.
  22. http://blog.naver.com/rsm6666/100136500997