References
- Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature, 382, 54 (1996) DOI:10.1038/382054a0
- Jianwei C, Tahir C, William AG. Thermal conductivity of carbon nanotubes. Nanotechnology, 11, 65 (2000) DOI:10.1088/0957-4484/11/2/305
- Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L. Mechanical properties of carbon nanotubes. App Phy A, 69, 255 (1999) DOI:10.1007/s003390050999
- Fujii M, Zhang X, Xie H, Ago H, Takahashi K. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett, 6, 065502 (2005) DOI: 10.1103/PhysRevLett.95.065502
- Ruoff RS, Qian D, Liu KM. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Physique, 4, 993 (2003) DOI: 10.1016/j.crhy.2003.08.001
- Zeng Y, Liu P, Du JH, Zhao L, Ajayan PM, Cheng HM. Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions. Carbon, 48, 3551 (2010) DOI:10.1016/j.carbon.2010.05.053
- Hou C, Li T, Zhao T, Whang W, Cheng Y. Electromagnetic wave absorbing properties of carbon nanotubes doped rare metal/pure carbon nanotubes double-layer polymer composites. Materials & Design, 33, 413 (2012) DOI: 10.1016/j.matdes.2011.04.042
- Wang X, Yong ZZ, Lib QW, Bradford PD, Liu W, Tucker DS, Ca W, Wang H, Yuan FG, Zhu YT. Ultrastrong, stiff and multifunctional carbon nanotube composites, Mater Res Lett, 1, 19 (2013) DOI:10.1080/21663831.2012.686586
- Wu ML, Chen Y, Zhang L, Zhan H, Qiang L, Wang.NJ. Highperformance carbon nanotube/polymer composite fiber from layerby-layer deposition. Appl Mater Interfaces, 8, 8137 (2016) DOI: 10.1021/acsami.6b01130
- Collins PG. Defects and disorder in carbon nanotubes. Oxford Handbook of Nanoscience and Technology: Volume 2: Materials: Structures, Properties and Characterization Techniques, 2, 31 (2010).
- Kis A, Zettl A. Nanomechanics of carbon nanotubes. Phil Trans R Soc A, 366, 1591 (2008) DOI:10.1098/rsta.2007.2174
- Cheung CL, Kurtz A, Park HK, Lieber CM. Diameter-controlled synthesis of carbon nanotubes, J Phys Chem B, 106, 2429 (2002) DOI: 10.1021/jp0142278
- Ding F, Rosen A, Bolton K. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. J Chem Phys 8, 2775 (2004) DOI: 10.1063/1.1770424
- Hou Y, Tang J, Zhang H, Qian C, Feng Y, Liu J. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano, 3, 1057 (2009) DOI: 10.1021/nn9000512
- Labunov VA, Basaev AS, Shulitski BG, Shaman YP, Komissarov I, Prudnikava AL, Tay BK, Shakerzadeh M. Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition. Nanoscale Res Lett 7, 102 (2012) DOI: 10.1186/1556-276X-7-102
- Martin O, Gutierrez HR, Valiente AM, Terrones M, Blanco T, Baselga J. An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls. Mater Chem Phys, 140, 499 (2013) DOI: 10.1016/S0009-2614(01)01183-6
- Park YS, Moon HS, Huh MY, Kim BJ, Kuk YS, Kang SJ, Lee SH, An KY. Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition. Carbon letters, 14, 99 (2013) DOI: 10.5714/CL.2013.14.2.099
- Tang S, Zhong Z, Xiong Z, Sun L, Liu L, Lin j, Shen ZX, Tan KL. Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chem Phys Lett 300 19 (2001) DOI:10.1016/S0009-2614(01)01183-6
- Santhosh C, Saranya M, Felix S, Ramachandran R, Pradeep N, Uma V, Grace AN. Growth of carbon nanotubes using MgO supported Mo-Co catalysts by thermal chemical vapor deposition technique. J Nano Res. 24, 46 (2013) DOI: 10.4028/www.scientific. net/JNanoR.24.46
- Perez MM, Valles C, Maser WK, Martinez MT, Benito AM. Influence of molybdenum on the chemical vapour deposition production of carbon nanotubes. Nanotechnology, 16, S224 (2005) DOI: 10.1088/0957-4484/16/5/016.
- Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF. Geometrical percolation threshold of overlapping ellipsoids. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 52, 819 (1995) DOI: 10.1103/PhysRevE.52.819
- Kausar A, Rafique I, Muhammad B. Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. J Polym Plas Tech Eng, 55, 1167 (2016) DOI: 10.1080/03602559.2016.1163588
- Dul JH, Bai J, Cheng HM. The present status and key problems of carbon nanotube based polymer composites. J eXPRESS Polym Lett 1, 253 (2007) DOI: 10.3144/expresspolymLett.2007.39
- Ryu J, Han MJ, Improvement of the mechanical and electrical properties of polyamide 6 nanocomposites by non-covalent functionalization of multi-walled carbon nanotubes. Comp Sci Tech, 102, 169 (2014) DOI: 10.1016/j.compscitech.2014.07.022
- Bauhofer W, Kovacs JZ, A review and analysis of electrical percolation in carbon nanotube polymer composites. Comp Sci Tech. 69, 1486 (2009) DOI: 10.1016/j.compscitech.2008.06.018
- Ha HJ, Kim SC, Ha, KR. Morphology and properties of polyamide/multi-walled carbon nanotube composites. Macromolecular Research, 18, 660 (2010) DOI: 10.1007/s13233-010-0702-y
- Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Progress in Polymer Science, 36, 914-944 (2010) DOI: 10.1016/j.progpolymsci.2010.11.004