DOI QR코드

DOI QR Code

Geometric structure and electronic behavior of Rh decorating effect on zigzag CNTs (n=7-12): A DFT study

  • Cui, Hao (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University) ;
  • Zhang, Xiaoxing (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University) ;
  • Zhou, Yongjian (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University) ;
  • Zhang, Jun (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University)
  • Received : 2017.10.29
  • Accepted : 2017.11.15
  • Published : 2018.04.30

Abstract

Comprehensive calculations of the Rh decoration effect on zigzag CNTs with n ranging from 7 to 12 were conducted in this work to understand the effect of Rh doping on geometric structures and electronic behaviors upon metallic and semiconducting CNTs. The obtained results indicated that Rh dopant not only contributes to the deformation of C-C bonds on the sidewall of CNTs, but also transforms the electron distribution of related complexes, thereby leading to a remarkable increase of the conductivity of pure CNTs given the emerged novel state within the energy gap for metallic CNTs and the narrowed energy gap for semiconducting CNTs. Our calculations will be meaningful for exploiting novel CNT-based materials with better sensitivity to electrons and higher electrical conductivity compared with pure CNTs.

Keywords

References

  1. X. Zhang, H. Cui, J. Zhang and J. Tang, Applied Surface Science 419, 802-810 (2017). https://doi.org/10.1016/j.apsusc.2017.05.004
  2. A. Balram, S. Santhanagopalan, B. Hao, Y. K. Yap and D. D. Meng, Advanced Functional Materials 26 (15), n/a-n/a (2016).
  3. J. X. Zhao and Y. H. Ding, Materials Chemistry & Physics 110 (2-3), 411-416 (2008). https://doi.org/10.1016/j.matchemphys.2008.02.036
  4. A. K. Babaheydari, A. Jafari, G. Moghadam and K. Tavakoli, Advanced Science Letters 19 (11), 3201-3205 (2013). https://doi.org/10.1166/asl.2013.5161
  5. X. Zhang, Y. Gui and Z. Dai, The European Physical Journal D 69 (7), 1-8 (2015). https://doi.org/10.1140/epjd/e2014-50648-6
  6. S. W. Choi, J. Kim and Y. T. Byun, Sensors & Actuators B Chemical 238, 1032-1042 (2017). https://doi.org/10.1016/j.snb.2016.07.153
  7. M. Han, D. Jung and G. S. Lee, Chemical Physics Letters 610 (9), 61-266 (2014).
  8. Y. Li, M. Hodak, W. Lu and J. Bernholc, Carbon 101, 177-183 (2016). https://doi.org/10.1016/j.carbon.2016.01.092
  9. C. S. Yeung, L. Vincent Liu and A. W. Yan, Journal of Physical Chemistry C 112 (19), 199-206 (2008). https://doi.org/10.1021/jp077342c
  10. D. H. Chi, N. T. Cuong, N. A. Tuan, Y. T. Kim, H. T. Bao, T. Mitani, T. Ozaki and H. Nagao, Chemical Physics Letters 432 (1-3), 213-217 (2006). https://doi.org/10.1016/j.cplett.2006.10.063
  11. L. X. Wang, C. H. Yi, H. T. Zou, J. Xu and W. L. Xu, Acta Physico-Chimica Sinica 26 (1), 149-154 (2010).
  12. L. Wang, H. Zou, C. Yi, J. Xu and W. Xu, Dyes & Pigments 89 (3), 290-296 (2011). https://doi.org/10.1016/j.dyepig.2010.04.003
  13. Z. K. Horastani, S. J. Hashemifar, S. M. Sayedi and M. H. Sheikhi, International Journal of Hydrogen Energy 38 (31), 13680-13686 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.057
  14. H. M. Wang, H. X. Wang, Y. Chen, Y. J. Liu, J. X. Zhao, Q. H. Cai and X. Z. Wang, Applied Surface Science 273 (273), 302-309 (2013). https://doi.org/10.1016/j.apsusc.2013.02.035
  15. M. Bastos and I. Camps, Journal of Molecular Modeling 20 (2), 2094 (2014). https://doi.org/10.1007/s00894-014-2094-y
  16. X. Zhang, Y. Gui and Z. Dai, Applied Surface Science 315 (10), 196-202 (2014). https://doi.org/10.1016/j.apsusc.2014.07.056
  17. X. Zhang, Z. Dai, L. Wei, N. Liang and X. Wu, Sensors 13 (11), 15159 (2013). https://doi.org/10.3390/s131115159
  18. Y. Liu, H. Jiang, Y. Zhu, X. Yang and C. Li, Journal of Materials Chemistry A 4 (5), 1694-1701 (2016). https://doi.org/10.1039/C5TA10551J
  19. A. B. Dongil, C. Rivera-Carcamo, L. Pastor-Perez, A. Sepulveda- Escribano and P. Reyes, Catalysis Today 249, 72-78 (2015). https://doi.org/10.1016/j.cattod.2014.10.034
  20. B. Delley, (2000).
  21. J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters 77 (18), 3865-3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  22. R. Wang, D. Zhang, Y. Zhang and C. Liu, Journal of Physical Chemistry B 110 (37), 18267 (2006). https://doi.org/10.1021/jp061766+
  23. H. J. Monkhorst, Physical Review B 16 (4), 1748-1749 (1976). https://doi.org/10.1103/PhysRevB.16.1748
  24. Q. Zhao, N. M. Buongiorno, W. Lu and J. Bernholc, Nano Letters 5 (5), 847 (2005). https://doi.org/10.1021/nl050167w
  25. R. Wang, D. Zhang, Y. Zhang and C. Liu, The Journal of Physical Chemistry B 110 (37), 18267-18271 (2006). https://doi.org/10.1021/jp061766+
  26. X. Zhang, H. Cui, Y. Gui and J. Tang, Nanoscale Research Letters 12(1), 177 (2017). https://doi.org/10.1186/s11671-017-1945-8
  27. N. T. Cuong, A. Fujiwara, T. Mitani and D. H. Chi, Computational Materials Science 44(1), 163 (2008). https://doi.org/10.1016/j.commatsci.2008.01.061