DOI QR코드

DOI QR Code

Dispersion stability of polyelectrolyte-wrapped carbon black particles in a highly fluorinated solvent

  • Yoon, Hyeon Ji (WCSL (world Class Smart Lab) of Green Battery Lab., Department of Polymer Science and Engineering, Inha University) ;
  • Choe, Jun Ho (WCSL (world Class Smart Lab) of Green Battery Lab., Department of Polymer Science and Engineering, Inha University) ;
  • Jin, Hyoung-Joon (WCSL (world Class Smart Lab) of Green Battery Lab., Department of Polymer Science and Engineering, Inha University)
  • 투고 : 2017.09.12
  • 심사 : 2017.11.20
  • 발행 : 2018.04.30

초록

The dielectric medium used in electrophoretic displays (EPDs) is required to be an environmentally friendly solvent with high density, low viscosity, and a large electric constant. Hydrofluoroether, a highly fluorinated solvent with eco-friendly characteristics, is regarded as a viable alternative medium for EPDs, owing to the similarity of its physical properties to those of the conventional EPD medium. Surface modification of particles is required, however, in order for it to disperse in the charged solvent. Also, positive/negative charges should be present on the particle surface to enable electrophoretic behavior. In this study, carbon black particles wrapped with positively charged nitrogen (N-CBs) were fabricated by a simple hydrothermal process using a poly(diallyldimethylammonium chloride) solution as a black coloring agent for the EPD. The dispersion behavior of N-CBs was investigated in various solvents.

키워드

참고문헌

  1. Comiskey B, Albert JD, Yoshizawa H, Jacobson J, An electrophoretic ink for all-printed reflective electronic displays. Nature, 394, 253 (1998). doi: 10.1038/28349.
  2. Xiao L, Zheng X, Zhao T, Sun L, Liu F, Gao G, Dong A, Controllable immobilization of polyacrylamide onto glass slide: synthesis and characterization. Colloid Polym Sci, 291, 2359 (2013). Doi: 10.1007/s00396-013-2981-2.
  3. Werts MPL, Badila M, Brochon C, Hebraud A, Hadziioannou G, Titanium dioxide-polymer core-shell particles dispersions as electronic inks for electrophoretic displays. Chem Mater, 20, 1292 (2008). doi: 10.1021/cm071197y.
  4. Song JK, Choi HJ, Chin I, Preparation and properties of electrophoretic microcapsules for electronic paper. J Microencapsul, 24, 11 (2007). doi: 10.1080/02652040601058384.
  5. Bolaji BO, Huan Z, Ozone depletion and global warming: Case for the use of natural refrigerant-a review. Renew Sust Energ Rev, 18, 49 (2013). doi: 10.1016/j.rser.2012.10.008.
  6. Belsey KE, Topping C, Farrand LD, Holder SJ, Inhibiting the thermal gelation of copolymer stabilized nonaqueous dispersions and the synthesis of full color PMMA particles. Langmuir, 32, 2556 (2016). doi: 10.1021/acs.langmuir.6b00063.
  7. Fang Y, Wang S, Xiao Y, Li X, Preparation and properties of red inorganic hollow nanospheres for electrophoretic display. Appl Surf Sci, 317, 319 (2104). doi: 10.1016/j.apsusc.2014.08.121.
  8. Fang K, Ren B, A facile method for preparing colored nanospheres of poly(styrene-co-acrylic acid). Dyes Pigment, 100, 50 (2014). doi: 10.1016/j.dyepig.2013.07.021.
  9. Qi D, Cao Z, Ziener U, Recent advances in the preparation of hybrid nanoparticles in miniemulsions. Adv Colloid Interface Sci, 211, 47 (2014). doi: 10.1016/j.cis.2014.06.001.
  10. Park KJ, Lee KU, Kim MH, Kwon OJ, Kim JJ, Preparation of PS/$TiO_2$ as a white pigment for electrophoretic displays. Curr Appl Phys, 13, 1231 (2013). doi: 10.1016/j.cap.2013.03.020.
  11. Kim KS, Lee JY, Park BJ, Sung JH, Chin I, Choi HJ, Lee JH, Synthesis and characteristics of microcapsules containing electrophoretic particle suspensions. Colloid Polym Sci, 284, 813 (2006). doi: 10.1007/s00396-006-1465-z.
  12. Maiti J, Basfar AA, Encapsulation of carbon black by surfactant free emulsion polymerization process. Macromol Res, 25, 120 (2017). doi: 10.1007/s13233-017-5023-y.
  13. Tan T, Wang S, Bian S, Li X, An Y, Liu Z, Novel synthesis and electrophoretic response of low density TiO-$TiO_2$-carbon black composite. Appl Surf Sci, 256, 6932 (2010). doi: 10.1016/j.apsusc. 2010.04.061.
  14. Lee KU, Park KJ, Kwon OJ, Kim JJ, Carbon sphere as a black pigment for an electronic paper. Curr Appl Phys, 13, 419 (2013). doi: 10.1016/j.cap.2012.09.003.
  15. Szeluga U, Kumanek B, Trzebicka B, Synergy in hybrid polymer/nanocarbon composites. A review. Compos Pt A, 73, 204 (2015). doi: 10.1016/j.compositesa.2015.02.021.
  16. Lahaye J, Ehrburger-Dolle F, Mechanisms of carbon black formation. Correlation with the morphology of aggregates. Carbon, 32, 1319 (1994). doi: 10.1016/0008-6223(94)90118-X.
  17. Fu S, Zhang L, Tian A, Xu Y, Du C, Xu C, Preparation of a novel colorant with branched poly(styrene-alt-maleic anhydride) for textile printing. Ind Eng Chem Res, 53, 10007 (2014). doi: 10.1021/ie500865e.
  18. Ridaoui H, Jada A, Vidal L, Donnet JB, Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloid Surf A-Physicochem Eng Asp, 278, 149 (2006). doi: 10.1016/j.colsurfa.2005.12.013.
  19. Chou IC, Chen SI, Chiu WY, Surfactant-free dispersion polymerization as an efficient synthesis route to a successful encapsulation of nanoparticles. RSC Adv, 4, 47436 (2014). doi: 10.1039/c4ra07475k.
  20. Kim M, Park KJ, Lee KU, Kim MJ, Kim WS, Kwon OJ, Kim JJ, Preparation of black pigment with the Couette-Taylor vortex for electrophoretic displays. Chem Eng Sci, 119, 245 (2014). doi: 10.1016/j.ces.2014.08.036.
  21. Kim JY, Oh JY, Suh KS, Voltage switchable surface-modified carbon black nanoparticles for dual-particle electrophoretic displays. Carbon, 66, 361 (2014). doi: 10.1016/j.carbon.2013.09.011.
  22. Gacek MM, Berg JC, The role of acid-base effects on particle charging in apolar media. Adv Colloid Interface Sci, 220, 108 (2015). doi: 10.1016/j.cis.2015.03.004.
  23. Yang F, Xin L, Uzunoglu A, Qiu Y, Stanciu L, Ilavsky J, Li W, Xie J, Investigation of the interaction between nafion ionomer and surface functionalized carbon black using both ultrasmall angle xray scattering and cryo-TEM. ACS Appl Mater Interfaces, 9, 6530 (2017). doi: 10.1021/acsami.6b12949.
  24. Tsai WT, Environmental risk assessment of hydrofluoroethers (HFEs). J Hazard Mater, A119, 69 (2005). doi: 10.1016/j.jhazmat.2004.12.018.
  25. Sekiya A, Misaki S, The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs. J Fluor Chem, 101, 215 (2000). doi: 10.1016/S0022-1139(99)00162-1.
  26. Kim H, Jo SH, Jee JH, Han W, Kim Y, Park HH, Jin HJ, Yoo B, Lee JK, Fluorous-inorganic hybrid dielectric materials for solutionprocessed electronic devices. New J Chem, 39, 836 (2015). doi: 10.1039/c4nj01435a.
  27. Xue YH, Zhou WJ, Zhang L, Li M, Chan SH, Poly (diallyldimethylammonium chloride)-functionalized reduced graphene oxide supported palladium nanoparticles for enhanced methanol oxidation. RSC Adv, 5, 32983 (2015). doi: 10.1039/C4RA16694A.
  28. Yang Y, Hao Y, Yuan J, Niu L, Xia F, In situ co-deposition of nickel hexacyanoferrate nanocubes on the reduced graphene oxides for supercapacitors. Carbon, 84, 174 (2015). doi: 10.1016/j.carbon.2014.12.005.
  29. Cho SY, Yun YS, Lee S, Jang D, Park KY, Kim JK, Kim BH, Kang K, Kaplan DL, Jin HJ, Carbonization of a stable ${\beta}$-sheet-rich silk protein into a pseudographitic pyroprotein. Nat Commun, 6, 7145 (2015). doi: 10.1038/ncomms8145.
  30. Hansen CM, Hansen solubility parameters: a user's handbook; 2nd edition, CRC Press: Hoboken (2007).
  31. Park S, An J, Jung I, Riner RD, An SJ, Li X, Velamakanni A, Ruoff RS, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett, 9, 1593 (2009). doi: 10.1021/nl803798y.
  32. Song MY, Yun YS, Kim NR, Jin HJ, Dispersion stability of chemically reduced graphene oxide nanoribbons in organic solvents. RSC Adv, 6, 19389 (2016). doi: 10.1039/c5ra23801c.
  33. Kim DH, Yun YS, Jin HJ, Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents. Curr Appl Phys, 12, 637 (2012). doi: 10.1016/j.cap.2011.09.015.
  34. Abe H, Imai Y, Tokunaga N, Yamashita Y, Sasaki Y, Highly efficient electrohydrodynamic pumping: molecular isomer effect of dielectric liquids, and surface states of electrodes. ACS Appl Mater Interfaces, 7, 24492 (2015). doi: 10.1021/acsami.5b05778.