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Abstract 
In the conventional computing environment, users use only a small number of software systems intensively. 
So it had been enough to check and guarantee the functional correctness and safety of a small number of giant 
systems in order to protect the user systems and their information inside the systems from outside attacks. 
However, checking the correctness and safety of giant systems is not enough anymore, since users are using 
various software systems or web services provided by unskilled developers. To prove or guarantee the safety of 
software system, a lot of research has been conducted in diverse areas of computer science. We will discuss the 
on-going approaches for guaranteeing or verifying the safety of software systems in this paper. We also 
discuss the future research challenge which must be solved with better solutions in the near future. 
 
Keywords 
Certified Compiler, Formal Verification, Language Semantics, Program Verification 
 

 
1. Introduction 

Due to the popularity of small computing devices such as smartphones, users are surrounded by 
diverse software more than ever. Software on small computing devices usually shows the characteristics 
of small size, low power consumption and smaller number of functions. Compared to these lightweight 
software systems, the conventional software systems show the characteristics of bigger size and more 
complex functionality. In the conventional computing environment, users use only a small number of 
software systems intensively. So it had been enough to check and guarantee the functional correctness 
and safety of a small number of giant systems in order to protect the user systems and their information 
inside the systems from outside attacks. 

However, checking the correctness and safety of giant systems is not enough anymore, since users are 
using various software systems or web services provided by unskilled developers. To prove or guarantee 
the safety of software system, a lot of research has been conducted in diverse areas of computer science. 
Testing or behavior monitoring has been one of the best approaches for insuring the safety and 
correctness of software system for a long time. Those approaches take a large amount of time and 
money for verification: paying time and money was worthy since the verified software was used for a 
long time, and the developers were rich enough to pay the verification cost. 

In the era of small software applications with relatively short lifetime, verifying the already-

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received November 11, 2017; first revision December 26, 2017; accepted December 29, 2017. 
Corresponding Author: Eunyoung Lee (elee@dongduk.ac.kr) 
* Dept. of ICT Platform & Services, National Information Society Agency, Daegu, Korea (khs@nia.or.kr)  
** Dept. of Computer Science & Engineering, Dongduk Women’s University, Seoul, Korea (elee@dongduk.ac.kr) 

J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 ISSN 1976-913X (Print) 
https://doi.org/10.3745/JIPS.01.0027 ISSN 2092-805X (Electronic) 



Verifying Code toward Trustworthy Software 

 

310 | J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 

implemented software is not a viable option anymore. Verifying the code in the middle of development 
or guiding developers to write a safer code would be a more feasible solution. If the language semantics 
could guarantee that the compiled code is always safe with a rigid proof, software developers would not 
need time-consuming testing or runtime monitoring any more. 

Due to the manifold definition of security, there exists an argument about the meaning of secure 
software. What does secure software or a secure software system mean? Is the software made by the 
development process which guarantees the security? Is the software going to be used for guaranteeing 
the security of users? Or will the software not undermine the security of the underlying system or the 
user information inside? 

Depending on which definition of secure software is used, the approaches toward building secure 
software will vary. In this paper, the term trustworthy software is used to refer a software system which 
will not do the harmful things if compiled. 

We will discuss the on-going approaches for guaranteeing or verifying the safety of software systems 
in this paper. Fig. 1 shows the research topics and mechanisms of software verification we will examine 
in this paper. In Section 2, current software verification approaches are categorized by their checking 
targets, target platforms, type of languages. From Section 3 to Section 5, we will discuss the state-of-the-
art approaches of trustworthy software. 

In Section 6, the examples of trustworthy software research will be reviewed to demonstrate the 
viability of trustworthy software development. We also discuss the future research challenge which 
must be solved with better solutions in the near future. We will conclude our review in Section 7. 

 

 

Fig. 1. Taxonomy of software verification research. 
 
 

2. Categories of Software Verification 

Categorizing the methods of software verification can be very tricky since so many algorithms, 
platforms, or frameworks have been proposed for the exactly same purpose: verifying software in order 
to guarantee its safe or not-hostile behavior. From the view point of programming language, one simple 
criterion is whether or not the language semantics is concerned for the resulting code safety. 
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If the safety of implemented software is checked by the language semantics, it is not necessary to 
verify the resulting software after development is done. That means, if the code compilation is 
successful, the code will not do any harm to the system. With these approaches, verification is usually 
done when writing code and compiling it. Programming languages in this category are usually equipped 
with fully-verified operational semantics, and dedicated certifying compiler produces runnable machine 
code and a proof of its safety. Verification of the software safety ends up with checking the validity of 
the accompanying proof. The operational semantics of these languages and the proofs are usually 
written in mathematical logic. The proofs can be written by human experts, but it can be a tedious job 
for a human expert to write down long logical formulas for herself. Producing a proof for a snippet of 
code and verifying the proof automatically is one of the most interesting issues in semantics-based 
software verification, and software systems for this purpose are called theorem provers. We will discuss 
the research trend of theorem provers in Section 6.2. 

However, most of the programming languages which are used for software implementation do not 
have the safety-sensitive operational semantics. In order to overcome the weakness of conventional 
programming languages such as C or to re-enforce the safe feature of conventional programming 
languages such as Java, constraint specification languages have been proposed. Constraint specification 
languages are used for specifying the pre- and post-conditions of functional procedures written in 
conventional programming language. Constraint are dropped or transformed into a bunch of 
conditional branch code by the dedicated pre-processors. In the runtime, constraints defined by 
developers are checked to see whether all the required constraints remain valid. Even though adding 
annotation is weaker than writing a program in a programming language with safety-sensitive 
semantics, adding annotation can be a good option when implementing all the software system is 
already done. We will discuss the constraint specification languages in Section 4. 

If the source code is not available for annotation, the annotating approach cannot be applied. In this 
case, it is inevitable to determine the safety of a software system based on its observable behavior. Software 
testing and address space protection are two of the most popular software verification techniques which 
can be used without available source code. We will discuss these techniques in Section 5. 

Some security features are so important that some approaches cross our classification boundaries 
have been proposed. These are: memory space protection and information flow security. Keeping a not-
verified application within a limited memory space prevents the untrusted application from underlying 
system infrastructure or other applications. Sandboxing is monitoring the addressing violation in order 
to protect the memory address boundary of every application. Since it is a runtime monitoring approach, 
sandboxing can be applied to software with no source code. Software fault isolation is another approach 
to protect address boundaries. In this scheme, annotations checking address violation are inserted into 
the source code of application automatically before compiling. Recently the researchers have started 
checking the memory safety by language semantics and checkable proofs. Separation logic is the most 
up-and-coming research in this area. With separation logic, more rigid and tight reasoning can be 
achieved in protecting memory address spaces. We will discuss sandboxing in Section 5.2, software fault 
isolation in Section 4.1, and separation logic in Section 3.4. 

Information flow security is another good example to which diverse approaches are applied. 
Information breach of program variables can be successfully handled by program annotation, whereas 
covert channels such as timing or power consumption can be detected by runtime monitoring. We will 
discuss the approaches for information flow security in Section 4.2 and Section 5.3. Table 1 shows the 
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classification of software verification we proposed in this paper. 
After extensive overview of software verification mechanisms, we will discuss the research topics 

which must be explored for the success of software verification. We will present the related topics with 
some pioneering research examples in Section 6. 

 
Table 1. Classification features of software verification 

 PCC TAL Dependent 
type 

Separation
logic SFI Information 

flow Fuzzing Sandbox PBRT 

Considering semantics Yes Yes Yes Yes No No No No Yes 

Observing behavior No No No No No Yes Yes Yes Yes 

Need of source code Yes Yes Yes Yes Yes Yes/No Yes/No No Yes 

 
 

3. Checking by Language Semantics  

Infusing safety feature into language semantics can be very useful to build safe and trustworthy 
software. Researches in this area usually span in two ways: formalizing the semantics of (a subset of) 
existing language or designing a new language with formalized language semantics. 

 
3.1 Proof-Carrying Code 
 

Necula and his colleague [1,2] proposed proof-carrying code (PCC) in which a host system can 
execute a code from untrusted outside party. In this mechanism, the host system must determine with 
certainty that it is safe to execute a program supplied (possibly in binary form) by an untrusted (and 
maybe malicious) outsider. The untrusted code producer must supply with the code a safety proof that 
claims that the code satisfies a previously defined safety policy. 

Appel and his colleague [3,4] proposed foundational proof-carrying code (FPCC), in which code is 
verified with the smallest possible set of axioms, using the simplest possible verifier and the smallest 
possible runtime system. The paper describes the mathematical and engineering problems to be solved 
and how to applying PCC mechanism to general programs. 

Recent research of Vanegue [5] made comparison between PCC [1] and FPCC [3,4]. While in PCC, it 
is possible to make use of type rules directly in the axioms of the system, in FPCC, each type rule should 
be first defined from ground axioms. In addition, FPCC suggests the use of type-preserving compilers, 
such as the one in CompCert [6]. Vanague [5] argued that PCC is more vulnerable to unconventional 
machine instructions than FPCC since PCC can lose soundness because of its dependency to the 
underlying arbitrary type system. 

 
3.2 Typed Assembly Language 
 

Morrisett and his colleagues [7-9] proposed typed assembly language (TAL) which has been based on 
other machine code verification. The typed assembly language is based on a conventional RISC 
assembly language, but its static type system even supports high-level language abstractions, such as 
closures, tuples, and user-defined abstract data types. The type system ensures that well-typed programs 
cannot violate these abstractions, and the safety of underlying system. 
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The TAL has played an important role in verifying low-level system software [10]. Lattner and Adve 
[11] proposed a compiler framework called LLVM (Low Level Virtual Machine). The framework was 
designed to support transparent program analysis and transformation for arbitrary programs. It 
provides high-level information to compiler transformations at compile-time, link-time, and runtime. 

Patrignani et al. [12] suggested a compilation technique which prohibits an attacker operating at the 
target language level from bypassing security features of the source language. In their compilation 
scheme, whose source language is an object-oriented, high-level language and whose target language is 
an extended typed assembly language. 

 

3.3 Dependently Typed Functional Language 
 

In type theory, a dependent type is a type whose definition depends on a value. In intuitionistic type 
theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists" in 
intuitionistic type theory. Dependent types can enhance the expressive power of type systems, and the 
improved type system is powerful enough to prevent software bugs [13]. Several functional pro-
gramming languages support dependent types such as Agda [14], Cayenne [15], Coq [16,17], Epigram 
[18], and Idris [19]. 

Due to its expressive power, dependently typed language is utilized in several areas. For example, 
Jeffrey [20] proposed a compiler back-end and library for web client application development in Agda. 
The target language of the compiler back-end is JavaScript, so it can be plugged in a web browser. 

Coq is one of the most popular proof assistant based on dependently typed functional language. Huet 
and Herbelin [21] summarized the research related to Coq over 30 year. Researchers in diverse research 
areas are adopting Coq to verify formally their implementation. Athalye [22] suggested a framework 
based on Coq, which can be used for formalizing the theory of IO automata, including refinement, 
simulation relations, and composition. Chatzikyriakidis and Luo [23] utilized Coq for formalizing 
natural language inference based on the formal semantics in modern type theories (MTTs). 

 
3.4 Separation Logic 
 

It is commonly accepted that verifying a program written in a programming language allowing 
memory address manipulation such as C is extremely hard or even impossible. However, researchers 
have demonstrated that carefully designed logic or type system can reason about the safety of program 
with pointers. Separation logic by Reynolds [24-26] aims at expediting programs that manipulate 
pointer data structures. The separation logic is used for specifications and proofs of a program 
component, and it reasons about only the portion of memory used by the component, and not the 
entire global state of the system. 

For checking the proofs of a program, Berdine et al. [27] proposed an automatic proof checker of 
separation logic. In the proposed separation logic checker, called Smallfoot, the assertions describe only 
the shapes of data structures rather than their detailed contents. 

Separation logic has gained widespread popularity because of its ability to succinctly express complex 
invariants of program’s heap configurations. Qui and his colleagues [28,29] proposed a framework 
which extends the Vcc framework [30] to provide an automated deductive framework against 
separation logic specifications for C programs based on natural proofs. 
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4. Annotation and Transformation 

Implementing a software system in a programming language with rigorous semantics is the best way 
of building trustworthy software. However, there still exist a large number of legacy systems written in 
not-so-much safe programming languages. For some mysterious reasons, a lot of software systems are 
implemented in unsafe programming languages. To enhance the trustworthiness, adding annotation to 
the code of classic programming language is a simple and viable option. Usually annotated code is 
transformed into a code of original programming language by a dedicated pre-processor. 

 
4.1 Software Fault Isolation 
 

It has been believed that protecting memory space or memory pages is the duty of the OS/kernel or 
the hardware: virtual memory mechanism of hardware or user/admin mode of operating system [31]. 

However, memory boundaries can be preserved by program annotation. Wahbe et al. [32] proposed a 
memory protection based on program rewriting called software fault isolation (SFI). In SFI scheme, 
untrusted object code is modified by rewriting algorithm automatically in order for the untrusted code 
not to write or jump to an address outside its fault domain. 

Recently, SFI scheme has expanded to various intermediate languages or hardware platforms. While 
conventional SFI relies on analysis of assembly-level programs, Kroll et al. [33] suggested an improved 
scheme of analyzing and rewriting programs in a compiler intermediate language, the Cminor language 
of the CompCert C compiler. Since the CompCert compiler has been formally certified that its 
transformation process preserves the safety property of a program, it is formally guaranteed that 
resulting binary modules satisfy the SFI memory safety. At the same time, resulting binary modules can 
be any of the supported architectures of CompCert compiler. 

 
4.2 Information Flow Security 
 

Confidentiality is one of the most important factors of standard system security. An end-to-end 
confidentiality policy might assert that secret input data cannot be inferred by an attacker when the 
attacker can observe the system output. To enforce this information flow policy, access control and 
encryption have been conventionally used. In addition to these conventional protections, the use of 
programming language techniques for specifying and enforcing information flow policies has been 
proposed. Sabelfeld and Myers [34] have surveyed language-based approaches for information flow 
security and identified open challenges in this area of software verification. 

Costanzo et al. [35] designed and implemented a system which can be used to formally verify that the 
end-to-end behavior of the computing system really satisfies various information-flow policies. The 
input of their system includes a software system that consists of both C and assembly programs, and 
they demonstrate that their system constructed an end-to-end security proof, fully formalized in the 
Coq proof assistant. 

Static analysis approach can be also applied to catching covert channels. Doychev et al. [36] suggested 
a framework for the automatic, static analysis of cache side channels. In their approach, observed cache 
states, traces of hits and misses, and execution times are used to generate formal, quantitative security 
guarantees. 
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5. Checking Behavior 

If the source code of software system is not available, or if annotating is not expressive enough to 
cover the safety feature of stakeholders, the safety of software must be determined by observing the 
behavior of software. Testing or monitoring is not complete, but it is useful to find some (but not all) 
defects of software system if testing or monitoring is used widely and intensively. 

 
5.1 Fuzzing 
 

Fuzzing or fuzz testing might be the most popular testing techniques in these days. It is one of the 
automated software testing techniques, and the software conducting fuzzing test is called fuzzer. 
Fuzzers provides unexpected or random data as inputs to a computer program, and monitors the 
program running for crashes or potential memory leaks. Depending on the existence of source code, 
fuzzing is classified as white-box fuzzing or black-box fuzzing [37,38]. Generating test cases randomly is 
less powerful than considering program running path in test case generation, but it is also known that 
fuzzing is much more cost-effective [39].  

Godefroid et al. [40] proposed a grammar-based specification technique for generated random, but 
valid inputs for fuzzing. They also demonstrated that the complex structured-input guided by their 
proposed specification enhanced the effectiveness of white-box fuzzing. Stephens et al. [41] adopted 
symbolic execution when white-box fuzzing is performed. They showed that their fuzzer is efficient 
enough to identifying the same number of vulnerabilities, in the same time, as the top-scoring team of 
the qualifying event of the DARPA Cyber Grand Challenge. 

 
5.2 Sandboxing 
 

Sandboxing is a security mechanism for separating running programs, and protecting the programs 
from each other. It is usually used for executing untrusted or unverified code from outside of the system 
[42]. An untrusted program is put into a sandbox with a tightly controlled set of resources such as 
limited number of available APIs, restricted memory space, reduced network access or/and limited 
access to device drivers. In the sense of providing a highly controlled environment, sandboxing may be 
seen as a specific example of virtualization. 

Sandboxing is considered as the most useful tool to controlling the behavior of JavaScript. Due to its 
popularity and weak semantics, running a program in JavaScript might make a host system very 
vulnerable. Van Acker and Sabelfeld [43] proposed JavaScript sandboxing systems considering 
JavaScript rewriting systems and browser modifications. Politz et al. [44] suggested a new type system 
for verifying sandboxing properties of JavaScript. They also implemented a light-weight verifier based 
on the proposed type system, and demonstrated the effectiveness of the proposed technique by applying 
it to ADsafe, which was reported to have several bugs and software weaknesses. 

Agten et al. [45] proposed JavaScript sandboxing framework. Their framework requires no browser 
modifications: the sandboxing framework is implemented in JavaScript and is delivered to the browser 
by the websites that use it. Phung and Desmet [46] proposed a two-tier sandbox architecture to enable a 
website owner to enforce modular fine-grained security policies for untrusted third-party JavaScript 
code. The architecture consists of two layers: an outer sandbox that provides baseline isolation with 
generic, coarse-grained policies, and an inner sandbox that enables fine-grained policy enforcement 
specific to a particular untrusted application. 
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5.3 Information Flow Security 
 

Preventing user information from owing to non-legitimate third-party gets more important than ever 
as more and more sensitive personal information is gathered into small smart phones. Covert channels, 
that means, leaking information through program termination, execution time, or exceptions, have 
become the major source of wrong information flow. 

Since the source code of smartphone apps are not usually available for static analysis of potential 
information leaks, tracking or monitoring information flow is still the most viable ways of protecting 
the system from malicious information leaks. Enck et al. [47] implemented a system-wide dynamic taint 
tracking and analysis system, which is able to track multiple sources of sensitive data simultaneously. 
Their system also gave to users a visual analysis of how third-party applications collect and share their 
private data. 

JavaScript have led the web with static text and images to a powerful application platform. 
Increasingly, web applications combine services from different providers. Despite of the handiness of 
JavaScript and its dialects, JavaScript is criticized by its security weakness as a programming language. 
Hendin et al. [48] tried to enhance the security level of JavaScript with fine-grained tracking of 
information flow. They implemented JavaScript interpreter, which tracks information in the presence 
of libraries, as provided by browser APIs, as well as enforces information-flow policies for the full 
JavaScript language. 

 
5.4 Property-Based Random Testing 
 

Property-based random testing (PBRT) is a form of black-box testing with formal statements of its 
intended behavior properties. The testing case is derived from the formal statements, and the software 
system is tested with a large number of random test cases. PBRT was popularized in the functional 
programming society by the QuickCheck library for Haskell [49]. Pacheco and Ernst [50] proposed 
PBRT for java called RANDOOP. Their system generates unit tests for Java code using feedback-
directed random test generation. It also provides an annotation-based interface for specifying 
configuration parameters. 

The concept of random testing and testing directed by feedback has improved to automated random 
testing. Godefroid et al. [51] proposed the concept of directed automated random testing. They argued 
that with their system, testing can be performed completely automatically on any program that 
compiles—there is no need to write any test driver or harness code. 

 
 

6. Research Challenge 

6.1 Trusted Computing Base 
 

To guarantee the safety of implemented software, the underlying software systems must operate 
correctly. For example, if a compiler does not produce a correct code because of its internal bugs, all the 
care and attention a software developer pays would get useless. Some software such as compilers, 
operating systems or cryptography algorithms must be trusted, so they are called trusted computing 
base. There have been research cases showing the successful demonstration of verifying the trust-
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worthiness of base software. For compilers, Leroy's CompCert project [6,52] demonstrates the viability 
of automatic or machine-assisted program verification. In this project, the correctness of an optimizing 
C compiler is specified, implemented and proved. They expressed the operational semantics of all the 
involved languages, source language and all intermediate languages, as inductive relations in the Coq 
[16,17] proof assistant. The Vellvm project [53] formalized the LLVM compiler's intermediate language 
and proved the correctness of some key optimizations. 

In operating systems, the CertiKOS project [54,55] has built a new, fully verified and secure 
hypervisor kernel. Cerritos is hypervisor architecture that leverages formal certification to ensure 
correctness and counter information leakage in cloud computing. CertiKOS shows an example of 
applying recent advances in certified software design to implementation of a modular and evolvable 
certified kernel. Through machine-checkable proof certificates and runtime monitoring, CertiKOS 
provides users the assurance of correct and leak-free execution of their cloud services. Klein et al. 
[56,57] verified seL4 microkernel from an abstract specification down to its C implementation. A third-
generation microkernel of L4 provenance, seL4, comprises 8,700 lines of C code and 600 lines of 
assembler, and they built a formal, machine-checkable verification. In their verification, they assumed 
correctness of compiler, assembly code, and hardware. It also shows that verification of individual 
software in software hierarchy must depend on trusted computing base. 

 

6.2 Theorem Prover 
 

Tools for reasoning about programs ranges from fully automatic program analysis tools, called 
automated theorem prover, to interactive tools where the human is closely involved in the proof process, 
called proof assistant. Early versions of theorem provers were first-order. The first-order theorem 
provers were applied to the problem of verifying the correctness of computer programs in languages 
such as Pascal, Ada, and Java etc. First-order theorem proving is one of the most mature areas of 
automated theorem proving. CARINE (Computer Aided Reasoning engINE) [58] and Larch Prover 
[59] are notable automated theorem provers in their performance and rigorous. 

While other logics, such as higher-order logics, have more expressive power, theorem proving for 
these logics is far more difficult. Therefore, proving or/and checking higher-order logics are usually 
conducted by proof assistant systems with human involvement. Because of the flexibility and expressive 
power of higher-order logics, proof assistants are more prevalent than fully automated theorem provers: 
Coq [16,60], Isabelle [61,62], NuPRL [63], PVS [64], and Twelf [65,66]. 

 

6.3 Policy Specification 
 

It is not very easy to determine which property will be essential to safe software not to intrude the 
system security. It depends on what is expected from a software system. It would be very useful for a 
user or diverse stakeholders to specify their policy requirement in a dedicated language, and then other 
parts such as certifying compilers and theorem provers can generate and check the proofs. REMS 
project [67] has calibrate formal specifications against observed behavior successfully. Formal languages 
like Z [68], Alloy [69], or AADL [70] are used for specifying properties of system models. Higher-order 
logic and type theories in modern proof systems will be successfully used for specifying arbitrary 
concepts as abstraction boundaries. 
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7. Conclusion 

We have discussed the on-going approaches for guaranteeing or verifying the safety of software 
systems in this paper. We have also discussed that more vigorous research is needed in some areas such 
as assisting automatic or semi-automatic theorem proving, specifying arbitrary policy policies, and 
making the infrastructure software more trustworthy. 

Building trustworthy software has been the aim of most of software developers since the dawn of 
computer science. Due to the intensive research on programming language semantics and formal 
verification as well as increasing hardware power and the ability of fast data analysis, we believe that we 
are close to machine-verifiable trustworthy software. 
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