

www.kips.or.kr Copyright© 2018 KIPS

Verifying Code toward Trustworthy Software

Hyong-Soon Kim* and Eunyoung Lee**

Abstract
In the conventional computing environment, users use only a small number of software systems intensively.
So it had been enough to check and guarantee the functional correctness and safety of a small number of giant
systems in order to protect the user systems and their information inside the systems from outside attacks.
However, checking the correctness and safety of giant systems is not enough anymore, since users are using
various software systems or web services provided by unskilled developers. To prove or guarantee the safety of
software system, a lot of research has been conducted in diverse areas of computer science. We will discuss the
on-going approaches for guaranteeing or verifying the safety of software systems in this paper. We also
discuss the future research challenge which must be solved with better solutions in the near future.

Keywords
Certified Compiler, Formal Verification, Language Semantics, Program Verification

1. Introduction

Due to the popularity of small computing devices such as smartphones, users are surrounded by
diverse software more than ever. Software on small computing devices usually shows the characteristics
of small size, low power consumption and smaller number of functions. Compared to these lightweight
software systems, the conventional software systems show the characteristics of bigger size and more
complex functionality. In the conventional computing environment, users use only a small number of
software systems intensively. So it had been enough to check and guarantee the functional correctness
and safety of a small number of giant systems in order to protect the user systems and their information
inside the systems from outside attacks.

However, checking the correctness and safety of giant systems is not enough anymore, since users are
using various software systems or web services provided by unskilled developers. To prove or guarantee
the safety of software system, a lot of research has been conducted in diverse areas of computer science.
Testing or behavior monitoring has been one of the best approaches for insuring the safety and
correctness of software system for a long time. Those approaches take a large amount of time and
money for verification: paying time and money was worthy since the verified software was used for a
long time, and the developers were rich enough to pay the verification cost.

In the era of small software applications with relatively short lifetime, verifying the already-

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received November 11, 2017; first revision December 26, 2017; accepted December 29, 2017.
Corresponding Author: Eunyoung Lee (elee@dongduk.ac.kr)
* Dept. of ICT Platform & Services, National Information Society Agency, Daegu, Korea (khs@nia.or.kr)
** Dept. of Computer Science & Engineering, Dongduk Women’s University, Seoul, Korea (elee@dongduk.ac.kr)

J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.01.0027 ISSN 2092-805X (Electronic)

Verifying Code toward Trustworthy Software

310 | J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018

implemented software is not a viable option anymore. Verifying the code in the middle of development
or guiding developers to write a safer code would be a more feasible solution. If the language semantics
could guarantee that the compiled code is always safe with a rigid proof, software developers would not
need time-consuming testing or runtime monitoring any more.

Due to the manifold definition of security, there exists an argument about the meaning of secure
software. What does secure software or a secure software system mean? Is the software made by the
development process which guarantees the security? Is the software going to be used for guaranteeing
the security of users? Or will the software not undermine the security of the underlying system or the
user information inside?

Depending on which definition of secure software is used, the approaches toward building secure
software will vary. In this paper, the term trustworthy software is used to refer a software system which
will not do the harmful things if compiled.

We will discuss the on-going approaches for guaranteeing or verifying the safety of software systems
in this paper. Fig. 1 shows the research topics and mechanisms of software verification we will examine
in this paper. In Section 2, current software verification approaches are categorized by their checking
targets, target platforms, type of languages. From Section 3 to Section 5, we will discuss the state-of-the-
art approaches of trustworthy software.

In Section 6, the examples of trustworthy software research will be reviewed to demonstrate the
viability of trustworthy software development. We also discuss the future research challenge which
must be solved with better solutions in the near future. We will conclude our review in Section 7.

Fig. 1. Taxonomy of software verification research.

2. Categories of Software Verification

Categorizing the methods of software verification can be very tricky since so many algorithms,
platforms, or frameworks have been proposed for the exactly same purpose: verifying software in order
to guarantee its safe or not-hostile behavior. From the view point of programming language, one simple
criterion is whether or not the language semantics is concerned for the resulting code safety.

Hyong-Soon Kim and Eunyoung Lee

J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 | 311

If the safety of implemented software is checked by the language semantics, it is not necessary to
verify the resulting software after development is done. That means, if the code compilation is
successful, the code will not do any harm to the system. With these approaches, verification is usually
done when writing code and compiling it. Programming languages in this category are usually equipped
with fully-verified operational semantics, and dedicated certifying compiler produces runnable machine
code and a proof of its safety. Verification of the software safety ends up with checking the validity of
the accompanying proof. The operational semantics of these languages and the proofs are usually
written in mathematical logic. The proofs can be written by human experts, but it can be a tedious job
for a human expert to write down long logical formulas for herself. Producing a proof for a snippet of
code and verifying the proof automatically is one of the most interesting issues in semantics-based
software verification, and software systems for this purpose are called theorem provers. We will discuss
the research trend of theorem provers in Section 6.2.

However, most of the programming languages which are used for software implementation do not
have the safety-sensitive operational semantics. In order to overcome the weakness of conventional
programming languages such as C or to re-enforce the safe feature of conventional programming
languages such as Java, constraint specification languages have been proposed. Constraint specification
languages are used for specifying the pre- and post-conditions of functional procedures written in
conventional programming language. Constraint are dropped or transformed into a bunch of
conditional branch code by the dedicated pre-processors. In the runtime, constraints defined by
developers are checked to see whether all the required constraints remain valid. Even though adding
annotation is weaker than writing a program in a programming language with safety-sensitive
semantics, adding annotation can be a good option when implementing all the software system is
already done. We will discuss the constraint specification languages in Section 4.

If the source code is not available for annotation, the annotating approach cannot be applied. In this
case, it is inevitable to determine the safety of a software system based on its observable behavior. Software
testing and address space protection are two of the most popular software verification techniques which
can be used without available source code. We will discuss these techniques in Section 5.

Some security features are so important that some approaches cross our classification boundaries
have been proposed. These are: memory space protection and information flow security. Keeping a not-
verified application within a limited memory space prevents the untrusted application from underlying
system infrastructure or other applications. Sandboxing is monitoring the addressing violation in order
to protect the memory address boundary of every application. Since it is a runtime monitoring approach,
sandboxing can be applied to software with no source code. Software fault isolation is another approach
to protect address boundaries. In this scheme, annotations checking address violation are inserted into
the source code of application automatically before compiling. Recently the researchers have started
checking the memory safety by language semantics and checkable proofs. Separation logic is the most
up-and-coming research in this area. With separation logic, more rigid and tight reasoning can be
achieved in protecting memory address spaces. We will discuss sandboxing in Section 5.2, software fault
isolation in Section 4.1, and separation logic in Section 3.4.

Information flow security is another good example to which diverse approaches are applied.
Information breach of program variables can be successfully handled by program annotation, whereas
covert channels such as timing or power consumption can be detected by runtime monitoring. We will
discuss the approaches for information flow security in Section 4.2 and Section 5.3. Table 1 shows the

Verifying Code toward Trustworthy Software

312 | J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018

classification of software verification we proposed in this paper.
After extensive overview of software verification mechanisms, we will discuss the research topics

which must be explored for the success of software verification. We will present the related topics with
some pioneering research examples in Section 6.

Table 1. Classification features of software verification

 PCC TAL Dependent
type

Separation
logic SFI Information

flow Fuzzing Sandbox PBRT

Considering semantics Yes Yes Yes Yes No No No No Yes

Observing behavior No No No No No Yes Yes Yes Yes

Need of source code Yes Yes Yes Yes Yes Yes/No Yes/No No Yes

3. Checking by Language Semantics

Infusing safety feature into language semantics can be very useful to build safe and trustworthy
software. Researches in this area usually span in two ways: formalizing the semantics of (a subset of)
existing language or designing a new language with formalized language semantics.

3.1 Proof-Carrying Code

Necula and his colleague [1,2] proposed proof-carrying code (PCC) in which a host system can
execute a code from untrusted outside party. In this mechanism, the host system must determine with
certainty that it is safe to execute a program supplied (possibly in binary form) by an untrusted (and
maybe malicious) outsider. The untrusted code producer must supply with the code a safety proof that
claims that the code satisfies a previously defined safety policy.

Appel and his colleague [3,4] proposed foundational proof-carrying code (FPCC), in which code is
verified with the smallest possible set of axioms, using the simplest possible verifier and the smallest
possible runtime system. The paper describes the mathematical and engineering problems to be solved
and how to applying PCC mechanism to general programs.

Recent research of Vanegue [5] made comparison between PCC [1] and FPCC [3,4]. While in PCC, it
is possible to make use of type rules directly in the axioms of the system, in FPCC, each type rule should
be first defined from ground axioms. In addition, FPCC suggests the use of type-preserving compilers,
such as the one in CompCert [6]. Vanague [5] argued that PCC is more vulnerable to unconventional
machine instructions than FPCC since PCC can lose soundness because of its dependency to the
underlying arbitrary type system.

3.2 Typed Assembly Language

Morrisett and his colleagues [7-9] proposed typed assembly language (TAL) which has been based on
other machine code verification. The typed assembly language is based on a conventional RISC
assembly language, but its static type system even supports high-level language abstractions, such as
closures, tuples, and user-defined abstract data types. The type system ensures that well-typed programs
cannot violate these abstractions, and the safety of underlying system.

Hyong-Soon Kim and Eunyoung Lee

J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 | 313

The TAL has played an important role in verifying low-level system software [10]. Lattner and Adve
[11] proposed a compiler framework called LLVM (Low Level Virtual Machine). The framework was
designed to support transparent program analysis and transformation for arbitrary programs. It
provides high-level information to compiler transformations at compile-time, link-time, and runtime.

Patrignani et al. [12] suggested a compilation technique which prohibits an attacker operating at the
target language level from bypassing security features of the source language. In their compilation
scheme, whose source language is an object-oriented, high-level language and whose target language is
an extended typed assembly language.

3.3 Dependently Typed Functional Language

In type theory, a dependent type is a type whose definition depends on a value. In intuitionistic type
theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists" in
intuitionistic type theory. Dependent types can enhance the expressive power of type systems, and the
improved type system is powerful enough to prevent software bugs [13]. Several functional pro-
gramming languages support dependent types such as Agda [14], Cayenne [15], Coq [16,17], Epigram
[18], and Idris [19].

Due to its expressive power, dependently typed language is utilized in several areas. For example,
Jeffrey [20] proposed a compiler back-end and library for web client application development in Agda.
The target language of the compiler back-end is JavaScript, so it can be plugged in a web browser.

Coq is one of the most popular proof assistant based on dependently typed functional language. Huet
and Herbelin [21] summarized the research related to Coq over 30 year. Researchers in diverse research
areas are adopting Coq to verify formally their implementation. Athalye [22] suggested a framework
based on Coq, which can be used for formalizing the theory of IO automata, including refinement,
simulation relations, and composition. Chatzikyriakidis and Luo [23] utilized Coq for formalizing
natural language inference based on the formal semantics in modern type theories (MTTs).

3.4 Separation Logic

It is commonly accepted that verifying a program written in a programming language allowing
memory address manipulation such as C is extremely hard or even impossible. However, researchers
have demonstrated that carefully designed logic or type system can reason about the safety of program
with pointers. Separation logic by Reynolds [24-26] aims at expediting programs that manipulate
pointer data structures. The separation logic is used for specifications and proofs of a program
component, and it reasons about only the portion of memory used by the component, and not the
entire global state of the system.

For checking the proofs of a program, Berdine et al. [27] proposed an automatic proof checker of
separation logic. In the proposed separation logic checker, called Smallfoot, the assertions describe only
the shapes of data structures rather than their detailed contents.

Separation logic has gained widespread popularity because of its ability to succinctly express complex
invariants of program’s heap configurations. Qui and his colleagues [28,29] proposed a framework
which extends the Vcc framework [30] to provide an automated deductive framework against
separation logic specifications for C programs based on natural proofs.

Verifying Code toward Trustworthy Software

314 | J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018

4. Annotation and Transformation

Implementing a software system in a programming language with rigorous semantics is the best way
of building trustworthy software. However, there still exist a large number of legacy systems written in
not-so-much safe programming languages. For some mysterious reasons, a lot of software systems are
implemented in unsafe programming languages. To enhance the trustworthiness, adding annotation to
the code of classic programming language is a simple and viable option. Usually annotated code is
transformed into a code of original programming language by a dedicated pre-processor.

4.1 Software Fault Isolation

It has been believed that protecting memory space or memory pages is the duty of the OS/kernel or
the hardware: virtual memory mechanism of hardware or user/admin mode of operating system [31].

However, memory boundaries can be preserved by program annotation. Wahbe et al. [32] proposed a
memory protection based on program rewriting called software fault isolation (SFI). In SFI scheme,
untrusted object code is modified by rewriting algorithm automatically in order for the untrusted code
not to write or jump to an address outside its fault domain.

Recently, SFI scheme has expanded to various intermediate languages or hardware platforms. While
conventional SFI relies on analysis of assembly-level programs, Kroll et al. [33] suggested an improved
scheme of analyzing and rewriting programs in a compiler intermediate language, the Cminor language
of the CompCert C compiler. Since the CompCert compiler has been formally certified that its
transformation process preserves the safety property of a program, it is formally guaranteed that
resulting binary modules satisfy the SFI memory safety. At the same time, resulting binary modules can
be any of the supported architectures of CompCert compiler.

4.2 Information Flow Security

Confidentiality is one of the most important factors of standard system security. An end-to-end
confidentiality policy might assert that secret input data cannot be inferred by an attacker when the
attacker can observe the system output. To enforce this information flow policy, access control and
encryption have been conventionally used. In addition to these conventional protections, the use of
programming language techniques for specifying and enforcing information flow policies has been
proposed. Sabelfeld and Myers [34] have surveyed language-based approaches for information flow
security and identified open challenges in this area of software verification.

Costanzo et al. [35] designed and implemented a system which can be used to formally verify that the
end-to-end behavior of the computing system really satisfies various information-flow policies. The
input of their system includes a software system that consists of both C and assembly programs, and
they demonstrate that their system constructed an end-to-end security proof, fully formalized in the
Coq proof assistant.

Static analysis approach can be also applied to catching covert channels. Doychev et al. [36] suggested
a framework for the automatic, static analysis of cache side channels. In their approach, observed cache
states, traces of hits and misses, and execution times are used to generate formal, quantitative security
guarantees.

Hyong-Soon Kim and Eunyoung Lee

J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 | 315

5. Checking Behavior

If the source code of software system is not available, or if annotating is not expressive enough to
cover the safety feature of stakeholders, the safety of software must be determined by observing the
behavior of software. Testing or monitoring is not complete, but it is useful to find some (but not all)
defects of software system if testing or monitoring is used widely and intensively.

5.1 Fuzzing

Fuzzing or fuzz testing might be the most popular testing techniques in these days. It is one of the
automated software testing techniques, and the software conducting fuzzing test is called fuzzer.
Fuzzers provides unexpected or random data as inputs to a computer program, and monitors the
program running for crashes or potential memory leaks. Depending on the existence of source code,
fuzzing is classified as white-box fuzzing or black-box fuzzing [37,38]. Generating test cases randomly is
less powerful than considering program running path in test case generation, but it is also known that
fuzzing is much more cost-effective [39].

Godefroid et al. [40] proposed a grammar-based specification technique for generated random, but
valid inputs for fuzzing. They also demonstrated that the complex structured-input guided by their
proposed specification enhanced the effectiveness of white-box fuzzing. Stephens et al. [41] adopted
symbolic execution when white-box fuzzing is performed. They showed that their fuzzer is efficient
enough to identifying the same number of vulnerabilities, in the same time, as the top-scoring team of
the qualifying event of the DARPA Cyber Grand Challenge.

5.2 Sandboxing

Sandboxing is a security mechanism for separating running programs, and protecting the programs
from each other. It is usually used for executing untrusted or unverified code from outside of the system
[42]. An untrusted program is put into a sandbox with a tightly controlled set of resources such as
limited number of available APIs, restricted memory space, reduced network access or/and limited
access to device drivers. In the sense of providing a highly controlled environment, sandboxing may be
seen as a specific example of virtualization.

Sandboxing is considered as the most useful tool to controlling the behavior of JavaScript. Due to its
popularity and weak semantics, running a program in JavaScript might make a host system very
vulnerable. Van Acker and Sabelfeld [43] proposed JavaScript sandboxing systems considering
JavaScript rewriting systems and browser modifications. Politz et al. [44] suggested a new type system
for verifying sandboxing properties of JavaScript. They also implemented a light-weight verifier based
on the proposed type system, and demonstrated the effectiveness of the proposed technique by applying
it to ADsafe, which was reported to have several bugs and software weaknesses.

Agten et al. [45] proposed JavaScript sandboxing framework. Their framework requires no browser
modifications: the sandboxing framework is implemented in JavaScript and is delivered to the browser
by the websites that use it. Phung and Desmet [46] proposed a two-tier sandbox architecture to enable a
website owner to enforce modular fine-grained security policies for untrusted third-party JavaScript
code. The architecture consists of two layers: an outer sandbox that provides baseline isolation with
generic, coarse-grained policies, and an inner sandbox that enables fine-grained policy enforcement
specific to a particular untrusted application.

Verifying Code toward Trustworthy Software

316 | J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018

5.3 Information Flow Security

Preventing user information from owing to non-legitimate third-party gets more important than ever
as more and more sensitive personal information is gathered into small smart phones. Covert channels,
that means, leaking information through program termination, execution time, or exceptions, have
become the major source of wrong information flow.

Since the source code of smartphone apps are not usually available for static analysis of potential
information leaks, tracking or monitoring information flow is still the most viable ways of protecting
the system from malicious information leaks. Enck et al. [47] implemented a system-wide dynamic taint
tracking and analysis system, which is able to track multiple sources of sensitive data simultaneously.
Their system also gave to users a visual analysis of how third-party applications collect and share their
private data.

JavaScript have led the web with static text and images to a powerful application platform.
Increasingly, web applications combine services from different providers. Despite of the handiness of
JavaScript and its dialects, JavaScript is criticized by its security weakness as a programming language.
Hendin et al. [48] tried to enhance the security level of JavaScript with fine-grained tracking of
information flow. They implemented JavaScript interpreter, which tracks information in the presence
of libraries, as provided by browser APIs, as well as enforces information-flow policies for the full
JavaScript language.

5.4 Property-Based Random Testing

Property-based random testing (PBRT) is a form of black-box testing with formal statements of its
intended behavior properties. The testing case is derived from the formal statements, and the software
system is tested with a large number of random test cases. PBRT was popularized in the functional
programming society by the QuickCheck library for Haskell [49]. Pacheco and Ernst [50] proposed
PBRT for java called RANDOOP. Their system generates unit tests for Java code using feedback-
directed random test generation. It also provides an annotation-based interface for specifying
configuration parameters.

The concept of random testing and testing directed by feedback has improved to automated random
testing. Godefroid et al. [51] proposed the concept of directed automated random testing. They argued
that with their system, testing can be performed completely automatically on any program that
compiles—there is no need to write any test driver or harness code.

6. Research Challenge

6.1 Trusted Computing Base

To guarantee the safety of implemented software, the underlying software systems must operate
correctly. For example, if a compiler does not produce a correct code because of its internal bugs, all the
care and attention a software developer pays would get useless. Some software such as compilers,
operating systems or cryptography algorithms must be trusted, so they are called trusted computing
base. There have been research cases showing the successful demonstration of verifying the trust-

Hyong-Soon Kim and Eunyoung Lee

J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 | 317

worthiness of base software. For compilers, Leroy's CompCert project [6,52] demonstrates the viability
of automatic or machine-assisted program verification. In this project, the correctness of an optimizing
C compiler is specified, implemented and proved. They expressed the operational semantics of all the
involved languages, source language and all intermediate languages, as inductive relations in the Coq
[16,17] proof assistant. The Vellvm project [53] formalized the LLVM compiler's intermediate language
and proved the correctness of some key optimizations.

In operating systems, the CertiKOS project [54,55] has built a new, fully verified and secure
hypervisor kernel. Cerritos is hypervisor architecture that leverages formal certification to ensure
correctness and counter information leakage in cloud computing. CertiKOS shows an example of
applying recent advances in certified software design to implementation of a modular and evolvable
certified kernel. Through machine-checkable proof certificates and runtime monitoring, CertiKOS
provides users the assurance of correct and leak-free execution of their cloud services. Klein et al.
[56,57] verified seL4 microkernel from an abstract specification down to its C implementation. A third-
generation microkernel of L4 provenance, seL4, comprises 8,700 lines of C code and 600 lines of
assembler, and they built a formal, machine-checkable verification. In their verification, they assumed
correctness of compiler, assembly code, and hardware. It also shows that verification of individual
software in software hierarchy must depend on trusted computing base.

6.2 Theorem Prover

Tools for reasoning about programs ranges from fully automatic program analysis tools, called
automated theorem prover, to interactive tools where the human is closely involved in the proof process,
called proof assistant. Early versions of theorem provers were first-order. The first-order theorem
provers were applied to the problem of verifying the correctness of computer programs in languages
such as Pascal, Ada, and Java etc. First-order theorem proving is one of the most mature areas of
automated theorem proving. CARINE (Computer Aided Reasoning engINE) [58] and Larch Prover
[59] are notable automated theorem provers in their performance and rigorous.

While other logics, such as higher-order logics, have more expressive power, theorem proving for
these logics is far more difficult. Therefore, proving or/and checking higher-order logics are usually
conducted by proof assistant systems with human involvement. Because of the flexibility and expressive
power of higher-order logics, proof assistants are more prevalent than fully automated theorem provers:
Coq [16,60], Isabelle [61,62], NuPRL [63], PVS [64], and Twelf [65,66].

6.3 Policy Specification

It is not very easy to determine which property will be essential to safe software not to intrude the
system security. It depends on what is expected from a software system. It would be very useful for a
user or diverse stakeholders to specify their policy requirement in a dedicated language, and then other
parts such as certifying compilers and theorem provers can generate and check the proofs. REMS
project [67] has calibrate formal specifications against observed behavior successfully. Formal languages
like Z [68], Alloy [69], or AADL [70] are used for specifying properties of system models. Higher-order
logic and type theories in modern proof systems will be successfully used for specifying arbitrary
concepts as abstraction boundaries.

Verifying Code toward Trustworthy Software

318 | J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018

7. Conclusion

We have discussed the on-going approaches for guaranteeing or verifying the safety of software
systems in this paper. We have also discussed that more vigorous research is needed in some areas such
as assisting automatic or semi-automatic theorem proving, specifying arbitrary policy policies, and
making the infrastructure software more trustworthy.

Building trustworthy software has been the aim of most of software developers since the dawn of
computer science. Due to the intensive research on programming language semantics and formal
verification as well as increasing hardware power and the ability of fast data analysis, we believe that we
are close to machine-verifiable trustworthy software.

References

[1] G. C. Necula, “Proof-carrying code,” in Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Paris, France, 1997, pp. 106-119.

[2] G. C. Necula and P. Lee, “Safe, untrusted agents using proof-carrying code,” in Mobile Agents and
Security. Heidelberg: Springer, 1998, pp. 61-91.

[3] A. W. Appel, “Foundational proof-carrying code,” in Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science, Boston, MA, 2001, pp. 247-256.

[4] A. W. Appel and D. McAllester, “An indexed model of recursive types for foundational proof-carrying
code,” ACM Transactions on Programming Languages and Systems, vol. 23, no. 5, pp. 657-683, 2001.

[5] J. Vanegue, “The weird machines in proof-carrying code,” in Proceedings of the IEEE Security and
Privacy Workshops, San Jose, CA, 2014, pp. 209-213.

[6] X. Leroy, “Formal verification of a realistic compiler,” Communications of the ACM, vol. 52, no. 7, pp.
107-115, 2009.

[7] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system F to typed assembly language,” ACM
Transactions on Programming Languages and Systems, vol. 21, no. 3, pp. 527-568, 1999.

[8] K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich, and S. Zdancewic, “Talx86:
a realistic typed assembly language,” in Proceedings of ACM SIGPLAN Workshop on Compiler Support for
System Software, Atlanta, GA, 1999, pp. 25-35.

[9] G. Morrisett, “Typed assembly language,” in Advanced Topics in Types and Programming Languages.
Cambridge, MA: MIT Press, 2005, pp. 141-176.

[10] F. Perry, L. Mackey, G. A. Reis, J. Ligatti, D. I. August, and D. Walker, “Fault-tolerant typed assembly
language,” ACM SIGPLAN Notices, vol. 42, pp. 42-53, 2007.

[11] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong program analysis &
transformation,” in Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, Palo Alto, CA, 2004, p. 75.

[12] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and F. Piessens, “Secure compilation to
protected module architectures,” ACM Transactions on Programming Languages and Systems, vol. 37, no.
2, article no. 6, 2015.

[13] H. Xi and R. Harper, “A dependently typed assembly language,” ACM SIGPLAN Notices, vol. 36, no. 10,
pp. 169-180, 2001.

[14] U. Norell, “Towards a practical programming language based on dependent type theory,” Ph.D.
dissertation, Chalmers University of Technology, Goteborg, Sweden, 2007.

Hyong-Soon Kim and Eunyoung Lee

J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 | 319

[15] L. Augustsson, “Cayenne: a language with dependent types,” in Proceedings of the 3rd ACM SIGPLAN
International Conference on Functional Programming, Baltimore, MD, 1998, pp. 239-250.

[16] B. Barras, S. Boutin, C. Cornes, J. Courant, J. C. Filliatre, E. Gimenez, et al., “The Coq proof assistant
reference manual: Version 6.1,” INRIA, Report No. RT-0203, 1997.

[17] A. Chlipala, Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof
Assistant. Cambridge, MA: MIT Press, 2013.

[18] C. McBride, “Epigram: practical programming with dependent types,” in Advanced Functional
Programming. Heidelberg: Springer, 2004, pp. 130-170.

[19] E. Brady, “Idris, a general-purpose dependently typed programming language: design and
implementation,” Journal of Functional Programming, vol. 23, no. 5, pp. 552-593, 2013.

[20] A. Jeffrey, “Dependently typed web client applications,” in Practical Aspects of Declarative Languages.
Heidelberg: Springer, 2013, pp. 228-243.

[21] G. Huet and H. Herbelin, “30 years of research and development around Coq,” ACM SIGPLAN Notices,
vol. 49, no. 1, pp. 249-249, 2014.

[22] A. Athalye, “CoqIOA: a formalization of I/O automata in the Coq proof assistant,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, 2017.

[23] S. Chatzikyriakidis and Z. Luo, “Natural language reasoning using proof assistant technology: rich typing
and beyond,” in Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language
Semantics, Gothenburg, Sweden, 2014, pp. 37-45.

[24] J. C. Reynolds, “Separation logic: a logic for shared mutable data structures,” in Proceedings of 17th
Annual IEEE Symposium on Logic in Computer Science, Copenhagen, Denmark, 2002, pp. 55-74.

[25] D. Distefano, P. O’Hearn, and H. Yang, “A local shape analysis based on separation logic,” in Tools and
Algorithms for the Construction and Analysis of Systems. Heidelberg: Springer, 2006, pp. 287-302.

[26] J. Berdine, C. Calcagno, and P. O'Hearn, “Symbolic execution with separation logic,” in Proceedings of
Asian Symposium on Programming Languages and Systems. Heidelberg: Springer, 2005, pp. 52-68.

[27] J. Berdine, C. Calcagno, and P. O'Hearn, “Smallfoot: modular automatic assertion checking with
separation logic,” in Formal Methods for Components and Objects. Heidelberg: Springer, 2005, pp. 115-
137.

[28] X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan, “Natural proofs for structure, data, and separation,”
ACM SIGPLAN Notices, vol. 48, no. 6, pp. 231-242, 2013.

[29] E. Pek, X. Qiu, and P. Madhusudan, “Natural proofs for data structure manipulation in C using
separation logic,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 440-451, 2014.

[30] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and S. Tobies,
“VCC: a practical system for verifying concurrent C,” in Theorem Proving in Higher Order Logics.
Heidelberg: Springer, 2009, pp. 23-42.

[31] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts Essentials. Hoboken, NJ: John
Wiley & Sons, 2014.

[32] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software based fault isolation,” ACM
SIGOPS Operating Systems Review, vol. 27, no. 5, pp. 203-216, 1994.

[33] J. A. Kroll, G. Stewart, and A. W. Appel, “Portable software fault isolation,” in Proceedings of the IEEE
27th Computer Security Foundations Symposium, Vienna, Austria, 2014, pp. 18-32.

[34] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 1, pp. 5-19, 2003.

[35] D. Costanzo, Z. Shao, and R. Gu, “End-to-end verification of information-flow security for C and
assembly programs,” ACM SIGPLAN Notices, vol. 51, no. 6, pp. 648-664, 2016.

[36] G. Doychev, B. Kopf, L. Mauborgne, and J. Reineke, “Cacheaudit: a tool for the static analysis of cache
side channels,” ACM Transactions on Information and System Security, vol. 18, no. 1, article no. 4, 2015.

Verifying Code toward Trustworthy Software

320 | J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018

[37] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability Discovery. Upper Saddle River,
NJ: Pearson Education, 2007.

[38] A. Takanen, J. D. Demott, and C. Miller, Fuzzing for Software Security Testing and Quality Assurance.
Norwood, MA: Artech House, 2008.

[39] J. W. Duran and S. Ntafos, “A report on random testing,” in Proceedings of the 5th International
Conference on Software Engineering, San Diego, CA, 1981, pp. 179-183.

[40] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox fuzzing,” ACM SIGPLAN Notices,
vol. 43, no. 6, pp. 206-215, 2008.

[41] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G.
Vigna, “Driller: augmenting fuzzing through selective symbolic execution,” in Proceedings of the 23rd
Annual Network and Distributed System Security Symposium, San Diego, CA, 2016, pp. 1-16.

[42] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure environment for untrusted helper
applications: confining the wily hacker,” in Proceedings of the 6th Conference on USENIX Security
Symposium Focusing on Applications of Cryptography, San Jose, CA, 1996.

[43] S. Van Acker and A. Sabelfeld, “JavaScript sandboxing: isolating and restricting client-side JavaScript,” in
Foundations of Security Analysis and Design VIII. Cham: Springer, 2015, pp. 32-86.

[44] J. G. Politz, S. Eliopoulos, A. Guha, and S. Krishnamurthi, “ADsafety: type-based verification of
JavaScript sandboxing,” in Proceedings of the 20th USENIX Security Symposium, San Francisco, CA, 2011,

[45] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, and F. Piessens, “JSand: complete client-
side sandboxing of third-party JavaScript without browser modifications,” in Proceedings of the 28th
Annual Computer Security Applications Conference, Orlando, FL, 2012, pp. 1-10.

[46] P. H. Phung and L. Desmet, “A two-tier sandbox architecture for untrusted JavaScript,” in Proceedings of
the Workshop on JavaScript Tools, Beijing, China, 2012, pp. 1-10.

[47] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,
“TaintDroid: an information-flow tracking system for real time privacy monitoring on smartphones,”
ACM Transactions on Computer Systems, vol. 32, no. 2, article no. 5, 2014.

[48] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “JSFlow: tracking information ow in JavaScript and its
APIs,” in Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea,
2014, pp. 1663-1671.

[49] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random testing of Haskell programs,”
ACM SIGPLAN notices, vol. 46, no. 4, pp. 53-64, 2011.

[50] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing for Java,” in Companion to the
22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications, Montreal,
Canada, 2007, pp. 815-816.

[51] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated random testing,” ACM SIGPLAN
Notices, vol. 40, no. 6, pp. 213-223, 2005.

[52] X. Leroy, “Formal certification of a compiler back-end or: programming a compiler with a proof
assistant,” ACM SIGPLAN Notices, vol. 41, no. 1, pp. 42-54, 2006.

[53] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Formalizing the LLVM intermediate
representation for verified program transformations,” ACM SIGPLAN Notices, vol. 47, no. 1, pp. 427-440,
2012.

[54] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo, “CertiKOS: a certified kernel for secure cloud
computing,” in Proceedings of the 2nd Asia-Pacific Workshop on Systems, Shanghai, China, 2011.

[55] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S. C. Weng, H. Zhang, and Y. Guo, “Deep
specifications and certified abstraction layers,” ACM SIGPLAN Notices, vol. 50, no. 1, pp. 595-608, 2015.

[56] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, et al., “seL4: formal verification of
an OS kernel,” in Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, Big
Sky, MT, 2009, pp. 207-220.

Hyong-Soon Kim and Eunyoung Lee

J Inf Process Syst, Vol.14, No.2, pp.309~321, April 2018 | 321

[57] G. Klein, J. Andronick, G. Keller, D. Matichuk, T. Murray, and L. O'Connor, “Provably trustworthy
systems,” Philosophical Transactions of the Royal Society A, vol. 375, no. 2104, 2017.

[58] R. E. Korf, “Depth-first iterative-deepening: an optimal admissible tree search,” Artificial Intelligence, vol.
27, no. 1, pp. 97-109, 1985.

[59] S. J. Garland and J. V. Guttag, “An overview of LP, the Larch Prover,” in Rewriting Techniques and
Applications. Heidelberg: Springer, 1989, pp. 137-151.

[60] A. Anand, A. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pollack, O. S. Belanger, M. Sozeau, and M.
Weaver, “CertiCoq: a verified compiler for Coq,” in Proceedings of the 3rd International Workshop on
Coq for Programming Languages, Paris, France, 2017.

[61] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for Higher-Order Logic.
Heidelberg: Springer, 2002.

[62] M. Wenzel, “Isabelle as document-oriented proof assistant,” in Intelligent Computer Mathematics.
Heidelberg: Springer, 2011, pp. 244-259.

[63] P. B. Jackson, The Nuprl Proof Development System (Version 4.2) Reference Manual and User's Guide.
Ithaca, NY: Cornell University, 1994.

[64] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas, “PVS: combining specification, proof
checking, and model checking,” in Computer Aided Verification. Heidelberg: Springer, pp. 411-414, 1996.

[65] F. Pfenning and C. Schurmann, “System description: Twelf: a meta-logical framework for deductive
systems,” in Automated Deduction (CADE-16). Heidelberg: Springer, 1999, pp. 202-206.

[66] C. Schurmann, “The Twelf proof assistant,” in Theorem Proving in Higher Order Logics. Heidelberg:
Springer, 2009, pp. 79-83.

[67] P. Sewell, “REMS: rigorous engineering of mainstream systems,” [Online]. Available: https://www.
cl.cam.ac.uk/~pes20/rems/.

[68] J. Madey, “Book Review: the Z notation: a reference manual: JM Spivey. Prentice Hall International,
Hemel Hempstead, United Kingdom, 1989,” Science of Computer Programming, vol. 15, no. 2/3, pp. 253-
255, 1990.

[69] D. Jackson, Software Abstractions: Logic, Language, and Analysis. Cambridge, MA: MIT Press, 2012.
[70] P. H. Feiler and D. P. Gluch, Model-based Engineering with AADL: an Introduction to the SAE Architecture

Analysis & Design Language. Upper Saddle River, NJ: Addison-Wesley, 2012.

Hyong-Soon Kim https://orcid.org/0000-0002-6144-3791

He received B.S., M.S., and Ph.D. degrees in Department of Computer Science and
Engineering from Korea University in 1995, 1997, and 2009, respectively. Since 1997,
he has been with National Information Society Agency of Korea as an Executive
Principal Researcher.

Eunyoung Lee https://orcid.org/0000-0001-8703-9730

She received her Ph.D. degree in Department of Computer Science from Princeton
University in 2004. Since 2005, she has been with Dongduk Women’s University,
Korea as faculty. Her current research interests include software security, parallel
computing, and cloud computing.

