DOI QR코드

DOI QR Code

의료 방사선사용에 따른 납과 텅스텐의 차폐효과 분석

Analysis of Shielding Effect of Lead and Tungsten by use of Medical Radiation

  • 장동근 (동남권 원자력의학원 핵의학과) ;
  • 김규형 (명지병원 영상의학과) ;
  • 박철우 (동의과학대학교 방사선과)
  • Jang, Donggun (Department of Nuclear Medicine, Dongnam Institute of Radiological & Medical Sciences Cancer center) ;
  • Kim, Gyoo Hyung (Department of Radiology, MyongJi hospital) ;
  • Park, Cheolwoo (Department of Radiological Technology, Dong-Eui Institute of Technology)
  • 투고 : 2018.03.15
  • 심사 : 2018.04.30
  • 발행 : 2018.04.30

초록

병원에서 방사선을 차폐하는데 있어 납은 매우 유용하게 사용되고 있다. 하지만 납은 독성을 가지고 있고 대체물질에 대한 연구가 많이 이루어지고 있으며, 대표적으로 텅스텐을 대체물질로 한 연구가 많이 이루어지고 있다. 이에 본 연구에서 납과 텅스텐의 물리적 특성 및 반가층 실험을 진행한 결과 원자번호가 높은 납 원소의 반응단면적이 텅스텐에 비해 높게 나타났으나, 텅스텐의 밀도가 높아 동일한 크기일 경우 텅스텐의 전자밀도가 납에 비해 약 1.7배 높은 것으로 나타났다. MCNPX를 이용한 모의 모사에서도 에너지 따라 다소 차이가 있지만 텅스텐이 납에 비해 약 1.4배 차폐효과가 높은 것으로 나타났으며, 텅스텐이 납에 비해 우수한 차폐효율을 갖고 있는 것으로 확인 되었다. 하지만 경제적 측면을 고려할 때 텅스텐은 희소금속으로 납에 비해 가격이 약 25배 높아 납에 대한 대체물질로는 부적당한 것으로 사료되었다.

Lead is a very useful material in shielding radiation in hospitals. But lead is toxic. Therefore, there are many studies on substitutable materials, Typically, there are many studies using tungsten. In this study, we investigated the physical properties of lead and tungsten and the Half value layer. As a result, lead having higher atomic number showed higher cross - sectional area than tungsten. But, at the same size, the electron density of tungsten with a high density is about 1.7 times higher than that of lead. In MCNPX simulation, the shielding effect of tungsten is about 1.4 times higher than that of lead, It was confirmed that tungsten had better shielding efficiency than lead. However, considering the economic aspect, tungsten is a rare metal, which is about 25 times more expensive than lead, which is considered to be inappropriate as an alternative to lead.

키워드

참고문헌

  1. Ministry of food and drug safety, "A study of health effect for occupational exposure in radiation workers," 2008.
  2. J. W. Kil, "Comparing of the Administered Activities and the Effective Dose of the Various Pediatric Dose Formulas of Nuclear Medicine," Journal of the Korea Convergence Society, Vol. 18, No. 8, pp. 147-154, 2017.
  3. H. Y. Kim, M. S. Lim, "A Study of Influence on the Psychological State of Hospital Employees through Convergence Career Management Systems," Journal of the Korea Convergence Society, Vol. 6, No. 6, pp. 119-129, 2015. https://doi.org/10.15207/JKCS.2015.6.6.119
  4. J. H. Kim, S. J Yoo, "Application and development of radiation worker management program," Journal of the Korea Academia-Industrial cooperation Society, Vol. 18, No. 11, pp. 367-373, 2017 https://doi.org/10.5762/KAIS.2017.18.11.367
  5. International commission on radiological protection, "Application of the Commission's Recommendations for the Protection of People in Emergency Exposure Situations," ICRP Publication 109, 2009
  6. A. Martin, S. Harbison, K. Beach, R. Cole, AN INTRODUCTION TO RADIATION ROTECTION, 6th Ed.,CRC Press, FL, 2012.
  7. S. C Kim, K. T Kim, J. K. Park, "Barium compounds through Monte Carlo simulation compare the performance of medical radiation shielding analysis," The Korean Society of Radiology, Vol. 7, No. 6, pp. 403-408, 2013. https://doi.org/10.7742/jksr.2013.7.6.403
  8. K. S. Chon, "Monte Carlo Simulation for Radiation Protection Sheets of Pb-Free", Journal of the Korean Society of Radiology, Vol. 11, No. 4, pp. 188-195, 2017.
  9. D. H. Kim, S. H. Kim, Y. J. Lee, et al., "Study on exposure dose and image quality of operator using shielding material in neuro interventional radiology", Journal of the Korean Society of Radiology, Vol. 11 No. 7, pp. 579-587, 2017. https://doi.org/10.7742/JKSR.2017.11.7.579
  10. K. T. Kim, S. S. Kang, S. C. Noh, et. al., "Absorbed spectrum comparison of lead and tungsten in continuous x-ray energy using monte carlo simulation", Journal of the Korean Society of Radiology, Vol. 6, No. 6, pp. 483-487, 2012. https://doi.org/10.7742/jksr.2012.6.6.483
  11. Radiation Measurement Research Society, " Radiation detection & measurement", chuung-ku publisher, 2010.
  12. National Institute of Standard and Technology, Physical Measurements Laboratory, XCOM Photon Cross-Sections Database, http://physics.nist.gov/PhysRefData/Xcom/ html/xcom1.html.
  13. World Health Oranization, "Lead (Enviromental Health Critcria)," pp. 44-54, 1997.
  14. Y. L. Oh, Y. R. Choi, B. S. Chang, et al., "Antioxidative Effect of Portulaca oleracea L. Extract on Allergic Contact Dermatitis-Induced Agent, Copper in Cultured Human Skin Fibroblasts," Journal of Investigative Cosmetology, Vol. 8, No. 4, pp. 243-249, 2012. https://doi.org/10.15810/jic.2012.8.4.004
  15. D. G. Jang, S. H. Lee, H. S. Choi, et al., "A study on the apron shielding ratio according to electromagnetic radiation energy," Journal of radiological science and technology, Vol. 37, No.4, pp. 247-252, 2014.
  16. J. W. Song, S. H. Lee, H. S. Hong, et al., "Industrial Supply Chain Trend of Domestic Tungsten," Journal of Korean Powder Metallurgy Institute, Vol. 19, No. 1, pp. 79-86, 2012. https://doi.org/10.4150/KPMI.2012.19.1.079
  17. Korea Nonferrous Metal Association, http://www.nonferrous.or.kr/

피인용 문헌

  1. Brain CT검사 시 3D프린터 필라멘트에 따른 수정체 차폐 연구 vol.15, pp.2, 2018, https://doi.org/10.7742/jksr.2021.15.2.101
  2. Evaluation of the Usefulness of Tungsten Nanoparticles as an Alternative to Lead Shielding Materials in Electron Beam Therapy vol.15, pp.7, 2021, https://doi.org/10.7742/jksr.2021.15.7.949
  3. 방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가 vol.15, pp.7, 2018, https://doi.org/10.7742/jksr.2021.15.7.965