DOI QR코드

DOI QR Code

Preparation and Properties of PVA Composites Containing Homogeneously Dispersed MWNTs

균일하게 분산된 MWNTs를 함유한 PVA 복합체의 제조와 물성

  • Chae, Dong Wook (Department of Textile Engineering, Kyungpook National University) ;
  • Hawkins, Stephen C. (School of Mechanical and Aerospace Engineering, Queen's University Belfast) ;
  • Huynh, Chi (Lintec of America, Inc., R&D Division Nano-Science and Technology Center)
  • Received : 2018.02.06
  • Accepted : 2018.03.15
  • Published : 2018.04.30

Abstract

This paper presents a novel and versatile fabrication method for the preparation of poly(vinyl alcohol) (PVA) composites containing completely dispersed multi-walled carbon nanotubes (MWNTs). Prior to mixing with PVA, the MWNTs were debundled by mixing with sugar syrup. The predispersed MWNTs were washed with water and filtered to remove the sugar syrup. Subsequently, they were mixed with PVA in water, followed by a solution casting process. Microscopic images of the PVA composites revealed that the dispersion was significantly better than those prepared with crude nanotubes. The dynamic viscosity of the PVA solutions increased as the MWNT content increased. Specifically, an abrupt increase in the yield stress was observed in the Casson plot with MWNT content between 5 and 10 wt%. Up to 1 wt% MWNT loading, there was no noticeable effect in the thermal stability, while further addition lowered the degradation temperature. The stress-strain curves showed a more pronounced yield and post-yield drop with increasing MWNT content up to 1 wt% loading, whereas further addition of MWNTs weakened the yield behavior. At only 1 wt% loading, the yield strength corresponded to the breaking strength. The tensile strength and the modulus of the PVA composites increased up to 1 wt% nanotube loading and decreased at higher nanotube contents. In addition, the elongation at break of the PVA composites decreased at a nanotube loading of ${\geq}0.5wt%$.

Keywords

References

  1. D. Blond, V. Barron, M. Ruether, K. P. Ryan, V. Nicolosi, W. J. Blau, and J. N. Coleman, "Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)-based Com-posites by the Incorporation of Poly(methyl methacrylate)- Functionalized Nanotubes", Adv. Funct. Mater., 2006, 16, 1608-1614. https://doi.org/10.1002/adfm.200500855
  2. E. Munoz, D. S. Suh, S. Collins, M. Selvidge, A. B. Dalton, B. G. Kim, J. M. Razal, G. Ussery, A. G. Rinzler, M. T. Martinez, and R. H. Baughman, "Highly Conducting Carbon Nanotube/ Polyethyleneimine Composite Fibers", Adv. Mater., 2005, 17, 1064-1067. https://doi.org/10.1002/adma.200401648
  3. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gunko, "Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-polymer Composites", Carbon, 2006, 44, 1624- 1652. https://doi.org/10.1016/j.carbon.2006.02.038
  4. H. C. Kuan, C. M. Ma, W. Chang, S. Yuen, H. Wu, and T. Lee, "Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nanotube/waterborne Polyurethane Nanocomposite", Compos. Sci. Technol., 2005, 65, 1703-1710. https://doi.org/10.1016/j.compscitech.2005.02.017
  5. J. Xiong, Z. Zheng, X. Qin, M. Ki, H. Li, and X. Wang, "The Thermal and Mechanical Properties of a Polyurethane/multi- walled Carbon Nanotube Composite", Carbon, 2006, 44, 2701-2707. https://doi.org/10.1016/j.carbon.2006.04.005
  6. B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, "Improved Structure and Properties of Single-wall Carbon Nanotube Spun Fibers", Appl. Phys. Lett., 2002, 81, 1210. https://doi.org/10.1063/1.1497706
  7. J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, "Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization", Nano Lett., 2003, 3, 1107-1113. https://doi.org/10.1021/nl0342489
  8. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, "Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/epoxy Composites", Carbon, 2005, 43, 23-30. https://doi.org/10.1016/j.carbon.2004.08.015
  9. M. Sano, A. Kamino, J. Okamura, and S. Shinkai, "Self- Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir−Blodgett Films", Langmuir, 2001, 17, 5125-5128. https://doi.org/10.1021/la010126p
  10. D. Tasis, N. Tagmatarchis, V. Georgakilas, and M. Prato, "Soluble Carbon Nanotubes", Chem. Eur. J., 2003, 9, 4000-4008. https://doi.org/10.1002/chem.200304800
  11. R. Cyrille, F. Balavoine, P. Schultz, E. W. Thomas, and C. Mioskowski, "Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes", Science, 2003, 300, 775-778. https://doi.org/10.1126/science.1080848
  12. M. S. P. Shaffer and A. H. Windle, "Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites", Adv. Mater., 2002, 11, 937-941.
  13. M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau, "Morphological and Mechanical Properties of Carbon- nanotube-reinforced Semicrystalline and Amorphous Polymer Composites", Appl. Phys. Lett., 2002, 81, 5123-5125. https://doi.org/10.1063/1.1533118
  14. Y. Lin, B. Zhou, K. A. S. Fernando, P. Liu, L. F. Allard, and Y. P. Sun, "Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer", Macromolecules, 2003, 36, 7199-7204. https://doi.org/10.1021/ma0348876
  15. W. Chen, X. Tao, P. Xue, and X. Cheng, "Enhanced Mechanical Properties and Morphological Characterizations of Poly(vinyl alcohol)-carbon Nanotube Composite Films", Appl. Surf. Sci., 2005, 252, 1404-1409. https://doi.org/10.1016/j.apsusc.2005.02.138
  16. Y. Bin, M. Mine, A. Koganemaru, X. Jiang, and M. Matsuo, "Morphology and Mechanical and Electrical Properties of Oriented PVA-VGCF and PVA-MWNT Composites", Polymer, 2006, 47, 1308-1317. https://doi.org/10.1016/j.polymer.2005.12.032
  17. S. Bhattacharyya, J. P. Salvetat, and M. L. Saboungi, "Reinforcement of Semicrystalline Polymer with Collagen- modified Single Walled Carbon Nanotubes", Appl. Phys. Lett., 2006, 88, 2331191.
  18. L. Liu, A. H. Barber, S. Nuriel, and H. D. Wagner, "Mechanical Properties of Functionalized Single-Walled Carbon-Nanotube/ Poly(vinyl alcohol) Nanocomposites", Adv. Funct. Mater., 2004, 15, 975-980.
  19. J. Wongon, S. Thumsorn, and N. Srisawat, "Poly(vinyl alcohol)/ Multiwalled Carbon Nanotubes Composite Nanofiber", Energy Procedia, 2016, 89, 313-317. https://doi.org/10.1016/j.egypro.2016.05.040
  20. Z. Yang, D. Xu, J. Liu, J. Liu, L. Li, L. Zhang, and J. Lv, "Fabrication and Characterization of Poly(vinyl alcohol)/ Carbon Nanotube Melt-spinning Composites Fiber", Prog. Nat. Sci. Mater., 2015, 25, 437-444. https://doi.org/10.1016/j.pnsc.2015.09.014
  21. S. A. M. Escobar, C. A. I. Merino, and J. M. M. Meza, "Mechanical and Thermal Behavior of Polyvinyl Alcohol Reinforced with Aligned Carbon Nanotubes", Revista Materia, 2015, 20, 794-802. https://doi.org/10.1590/S1517-707620150003.0085
  22. P. Zhang, D. Qiu, H. Chen, J. Sun, J. Wang, C. Qin, and L. Dai, "Preparation of MWCNTs Grafted with Polyvinylalcohol through Friedel-Crafts Alkylation and Their Composite Fibers with Enhanced Mechanical Properties", J. Mater. Chem. A, 2015, 3, 1442-1449. https://doi.org/10.1039/C4TA03979C
  23. W. S. Bae, O. J. Kwon, B. C. Kim, and D. W. Chae, "Effects of Multi-walled Carbon Nanotubes on Rheological and Physical Properties of Polyamide-based Thermoplastic Elastomers", Korea-Aust. Rheol. J., 2012, 24, 221-227. https://doi.org/10.1007/s13367-012-0027-9
  24. N. Casson in "Rheology of Disperse Systems" (C. C. Mills Ed.), Pergamon Press, New York, 1959, pp.84-102.
  25. J. Bae, S. Lee, B. C. Kim, H. H. Cho, and D. W. Chae, "Polyester-based Thermoplastic Elastomer/MWNT Composites: Rheological, Thermal, and Electrical Properties", Fiber. Polym., 2013, 14, 729-735. https://doi.org/10.1007/s12221-013-0729-8