참고문헌
- S. Amat, S. Busquier, and J. M. Gutierrez, Third-order iterative methods with applications to Hammerstein equations: a unified approach, J. Comput. Appl. Math. 235 (2011), no. 9, 2936-2943. https://doi.org/10.1016/j.cam.2010.12.011
- S. Amat, S. Busquier, and S. Plaza, Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl. 366 (2010), no. 1, 24-32. https://doi.org/10.1016/j.jmaa.2010.01.047
- S. Amat, M. A. Hernandez, and N. Romero, Semilocal convergence of a sixth order iterative method for quadratic equations, Appl. Numer. Math. 62 (2012), no. 7, 833- 841. https://doi.org/10.1016/j.apnum.2012.03.001
- I. K. Argyros, Computational Theory of Iterative Methods, Studies in Computational Mathematics, 15, Elsevier B. V., Amsterdam, 2007.
- I. K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity 28 (2012), no. 3, 364-387. https://doi.org/10.1016/j.jco.2011.12.003
- I. K. Argyros and A. A. Magrenan, Iterative methods and their dynamics with applications, CRC Press, Boca Raton, FL, 2017.
- I. K. Argyros and H. Ren, Improved local analysis for a certain class of iterative methods with cubic convergence, Numer. Algorithms 59 (2012), no. 4, 505-521. https://doi.org/10.1007/s11075-011-9501-6
- I. K. Argyros, J. R. Sharma, and D. Kumar, Local convergence of Newton-Gauss method in Banach spaces, SeMA (2016) doi: 10.1007/s40324-016-0091-z.
- D. K. R. Babajee, M. Z. Dauhoo, M. T. Darvishi, and A. Barati, A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule, Appl. Math. Comput. 200 (2008), no. 1, 452-458. https://doi.org/10.1016/j.amc.2007.11.009
- D. K. R. Babajee, M. Z. Dauhoo, M. T. Darvishi, A. Karami, and A. Barati, Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations, J. Comput. Appl. Math. 233 (2010), no. 8, 2002-2012. https://doi.org/10.1016/j.cam.2009.09.035
- C. Chun, P. Stanica, and B. Neta, Third-order family of methods in Banach spaces, Comput. Math. Appl. 61 (2011), no. 6, 1665-1675. https://doi.org/10.1016/j.camwa.2011.01.034
- A. Cordero and J. R. Torregrosa, Variants of Newton's method using fifth-order quadrature formulas, Appl. Math. Comput. 190 (2007), no. 1, 686-698. https://doi.org/10.1016/j.amc.2007.01.062
- M. T. Darvishi, A two-step high order Newton-like method for solving systems of nonlinear equations, Int. J. Pure Appl. Math. 57 (2009), no. 4, 543-555.
- M. T. Darvishi, Some three-step iterative methods free from second order derivative for finding solutions of systems of nonlinear equations, Int. J. Pure Appl. Math. 57 (2009), no. 4, 557-573.
- M. T. Darvishi and A. Barati, Super cubic iterative methods to solve systems of nonlinear equations, Appl. Math. Comput. 188 (2007), no. 2, 1678-1685. https://doi.org/10.1016/j.amc.2006.11.022
- J. A. Ezquerro and M. A. Hernandez, Recurrence relations for Chebyshev-type methods, Appl. Math. Optim. 41 (2000), no. 2, 227-236. https://doi.org/10.1007/s002459911012
- M. Grau-Sanchez, A. Grau, and M. Noguera, Ostrowski type methods for solving systems of nonlinear equations, Appl. Math. Comput. 218 (2011), no. 6, 2377-2385. https://doi.org/10.1016/j.amc.2011.08.011
- J. M. Gutierrez, A. A. Magrenan, and N. Romero, On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Appl. Math. Comput. 221 (2013), 79-88.
- M. A. Hernandez and E. Martinez, On the semilocal convergence of a three steps Newton- type iterative process under mild convergence conditions, Numer. Algorithms 70 (2015), no. 2, 377-392. https://doi.org/10.1007/s11075-014-9952-7
- H. H. H. Homeier, A modified Newton method with cubic convergence: the multivariate case, J. Comput. Appl. Math. 169 (2004), no. 1, 161-169. https://doi.org/10.1016/j.cam.2003.12.041
- K. I. Noor and M. A. Noor, Iterative methods with fourth-order convergence for nonlinear equations, Appl. Math. Comput. 189 (2007), no. 1, 221-227. https://doi.org/10.1016/j.amc.2006.11.080
- P. K. Parida and D. K. Gupta, Recurrence relations for a Newton-like method in Banach spaces, J. Comput. Appl. Math. 206 (2007), no. 2, 873-887. https://doi.org/10.1016/j.cam.2006.08.027
- M. S. Petkovic, B. Neta, L. D. Petkovic, and J. Dzunic, Multipoint methods for solving nonlinear equations, Elsevier/Academic Press, Amsterdam, 2013.
- H. Ren and Q. Wu, Convergence ball and error analysis of a family of iterative methods with cubic convergence, Appl. Math. Comput. 209 (2009), no. 2, 369-378. https://doi.org/10.1016/j.amc.2008.12.057
- W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, in Mathematical models and numerical methods (Papers, Fifth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1975), 129-142, Banach Center Publ., 3, PWN, Warsaw, 1978.
- J. R. Sharma and H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations, Appl. Math. Comput. 222 (2013), 497-506.
- J. R. Sharma, An efficient family of weighted-Newton methods with optimal eighth order convergence, Appl. Math. Lett. 29 (2014), 1-6.
- B.-C. Shin, M. T. Darvishi, and C.-H. Kim, A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems, Appl. Math. Comput. 217 (2010), no. 7, 3190-3198. https://doi.org/10.1016/j.amc.2010.08.051
- J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.
- S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), no. 8, 87-93. https://doi.org/10.1016/S0893-9659(00)00100-2
- S. Wolfram, The Mathematica Book, fifth edition, Wolfram Media, Inc., Champaign, IL, 2003.