DOI QR코드

DOI QR Code

A NOTE ON OPTIMIZATION WITH MORSE POLYNOMIALS

  • Received : 2017.05.25
  • Accepted : 2017.08.09
  • Published : 2018.04.30

Abstract

In this paper we prove that the gradient ideal of a Morse polynomial is radical. This gives a generic class of polynomials whose gradient ideals are radical. As a consequence we reclaim a previous result that the unconstrained polynomial optimization problem for Morse polynomials has a finite convergence.

Keywords

References

  1. A. Banyaga and D. Hurtubise, Lectures on Morse Homology, Springer-Verlag, Berlin, 2004.
  2. S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, Vol. 10, Springer-Verlag, Berlin, 2003.
  3. D. A. Cox, J. B. Little, and D. O'Shea, Using Algebraic Geometry, Graduate Texts in Mathematics, Number 185, Springer, New York, 1998.
  4. G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007.
  5. H. V. Ha and T.-S. Pham, Genericity in Polynomial Optimization, World Scientific Publishing, 2017.
  6. J.-B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2000/01), no. 3, 796-817. https://doi.org/10.1137/S1052623400366802
  7. C.-T. Le, Nonnegative Morse polynomial functions and polynomial optimization, Positivity 20 (2016), no. 2, 483-498. https://doi.org/10.1007/s11117-015-0367-z
  8. S. Lojasiewicz, Introduction to Complex Analytic Geometry, Birkhauser, 1991.
  9. J. Milnor, Morse Theory, Ann. Math. Studies. 51, 1963.
  10. Y. Nesterov, Squared functional systems and optimization problems, High performance optimization, 405-40, Appl. Optim., 33, Kluwer Acad. Publ., Dordrecht, 2000.
  11. J. Nie, J. Demmel, and B. Sturmfels, Minimizing polynomials via sum of squares over the gradient ideal, Math. Program. 106 (2006), no. 3, Ser. A, 587-606. https://doi.org/10.1007/s10107-005-0672-6
  12. M. Safey El Din, Computing the global optimum of a multivariate polynomial over the reals, ISSAC 2008, 7178, ACM, New York, 2008.