Abstract
The purpose of this study is to propose a power demand volatility evaluation system based on LSTM and not to verify the accuracy of the demand module which is a core module, but to recognize the sudden change of power pattern by using deeplearning in the actual power demand monitoring system. Then we confirm the availability of the module. Also, we tried to provide a visualized report so that the manager can determine the fluctuation of the power usage patten by applying it as a module to the web based system. It is confirmed that the power consumption data shows a certain pattern in the case of government offices and hospitals as a result of implementation of the volatility evaluation system. On the other hand, in areas with relatively low power consumption, such as residential facilities, it was not appropriate to evaluate the volatility.
본 연구는 LSTM기반의 전력수요 변동성 평가 시스템을 제안하고 핵심모듈인 수요예측모듈의 정확성을 증명하기 보다는 실제 전력수요 모니터링 시스템 내 딥러닝을 이용하여 갑작스러운 전력패턴의 변화를 인지할 수 있는 모듈에 대한 활용 가능성을 확인하고자 한다. 웹기반 시스템에 모듈로 적용하여 관리자가 전력사용 패턴의 변동성을 판단할 수 있도록 시각화된 보고서를 제공하였다. 변동성 평가시스템의 구현 결과 관공서와 병원 등의 기관의 경우 전력사용량 데이터가 일정한 형태의 패턴을 보임을 확인하였다. 반면 주거시설과 같이 전력사용량이 상대적으로 낮은 지역의 경우 변동성 평가에는 적절하지 않았음을 확인했다.