DOI QR코드

DOI QR Code

Web based Customer Power Demand Variation Estimation System using LSTM

LSTM을 이용한 웹기반 수용가별 전력수요 변동성 평가시스템

  • Seo, Duck Hee (Department of Mobile Software, Sangmyung University) ;
  • Lyu, Joonsoo (Department of Electrical Engineering, Sangmyung University) ;
  • Choi, Eun Jeong (Department of Computer Science, Sangmyung University) ;
  • Cho, Soohwan (Department of Electrical Engineering, Sangmyung University) ;
  • Kim, Dong Keun (Department of Intelligent Enginnering Informatics for human, Sangmyung University)
  • Received : 2018.02.01
  • Accepted : 2018.04.04
  • Published : 2018.04.30

Abstract

The purpose of this study is to propose a power demand volatility evaluation system based on LSTM and not to verify the accuracy of the demand module which is a core module, but to recognize the sudden change of power pattern by using deeplearning in the actual power demand monitoring system. Then we confirm the availability of the module. Also, we tried to provide a visualized report so that the manager can determine the fluctuation of the power usage patten by applying it as a module to the web based system. It is confirmed that the power consumption data shows a certain pattern in the case of government offices and hospitals as a result of implementation of the volatility evaluation system. On the other hand, in areas with relatively low power consumption, such as residential facilities, it was not appropriate to evaluate the volatility.

본 연구는 LSTM기반의 전력수요 변동성 평가 시스템을 제안하고 핵심모듈인 수요예측모듈의 정확성을 증명하기 보다는 실제 전력수요 모니터링 시스템 내 딥러닝을 이용하여 갑작스러운 전력패턴의 변화를 인지할 수 있는 모듈에 대한 활용 가능성을 확인하고자 한다. 웹기반 시스템에 모듈로 적용하여 관리자가 전력사용 패턴의 변동성을 판단할 수 있도록 시각화된 보고서를 제공하였다. 변동성 평가시스템의 구현 결과 관공서와 병원 등의 기관의 경우 전력사용량 데이터가 일정한 형태의 패턴을 보임을 확인하였다. 반면 주거시설과 같이 전력사용량이 상대적으로 낮은 지역의 경우 변동성 평가에는 적절하지 않았음을 확인했다.

Keywords

References

  1. B. J. Jang and S. G. Han, "Energy-IT fusion technology trends and major issues," Communications of the Korean Institute of Information Scientists and Engineers, vol. 28, no. 7, pp. 44-51, Aug. 2010.
  2. E. S. Yang, A. R. Kim, B. A. Kim and B. R. Shin, World Energy Market Insight 1st ed. Ulsan: Korea energy economics institute, 2016.
  3. M. J. Sung and K. W. Shin, "A Small-area Hardware Implementation of EGML-based Moving Object Detection Processor," Journal of Korea Institute of Information and Communication Engineering, vol. 21, no. 12, pp.2213-2220, Dec. 2017. https://doi.org/10.6109/JKIICE.2017.21.12.2213
  4. J. Y. Eum, "A Study on the Development of Energy Supply and Demand Prediction Models for Smart City Energy Management System(CEMS)," MS. thesis, Sangmyung University, Seoul, 2015.
  5. J. Y. Lee and L. Kolasani, "Security Based Network for Health Care System," Asia-pacific Journal of Convergent Research Interchange, vol. 1, no. 1, pp. 1-6, Mar 2015.
  6. J. K. Ko, I. K. Yang and I. H. Yu, "A Study On Demand Pattern Analysis for Forecasting of Customer's Electricity Demand," International Journal of Information and Communication Engineering, vol. 9, no. 4, pp. 358-362, Aug. 2011.
  7. N. H. Jo, " SVM Load Forecasting using Cross-Validation," The Transactions of The Korean Institute of Electrical Engineers , Vol. 55A No.11, pp. 485-491, Nov. 2006.
  8. C. H. Kim, "Power demand forecasting model using mixed cycle data," Korea energy economics institute: KR, Research Report, 2014.
  9. S. H. Song, "The Emotion Analysis Based on Long Short Term Memory using the Central and Autonomic Nervous System Signals," MS thesis Sangmyung University, Seoul, 2018.
  10. Y. Sugomori, Java Deep Learning Essentials 1st ed. Birmingham, WD: Packt Publishing Ltd, 2016.
  11. Skymind. Deeplearning4j: Open-source, Distributed Deep Learning for the JVM [Internet]. Available: https://deeplearning4j.org/quickref.
  12. M. Mutingi, C. Mbohwa and P. dube, "System dynamics archetypes for capacity management of energy systems," in 4th International Conference on Power and Energy Systems Engineering, Berlin: DE, pp. 199-205, 2017.

Cited by

  1. 오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템 vol.25, pp.8, 2021, https://doi.org/10.6109/jkiice.2021.25.8.1005
  2. NTIS 시스템에서 딥러닝과 형태소 분석 기반의 대화형 검색 서비스 설계 및 구현 vol.10, pp.12, 2018, https://doi.org/10.22156/cs4smb.2020.10.12.009