DOI QR코드

DOI QR Code

Study on the Illite Modification for Removal of Radioactive Cesium in Water Environment near Nuclear Facilities

원자력 시설 인근 수계에서 방사성 세슘 제거를 위한 일라이트 개질 연구

  • Hwang, Jeonghwan (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Choung, Sungwook (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Shin, Woosik (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Han, Weon Shik (Department of Earth System Science, Yonsei University)
  • 황정환 (한국기초과학지원연구원 지구환경연구부) ;
  • 정성욱 (한국기초과학지원연구원 지구환경연구부) ;
  • 신우식 (한국기초과학지원연구원 지구환경연구부) ;
  • 한원식 (연세대학교 지구시스템과학과)
  • Received : 2018.03.12
  • Accepted : 2018.04.04
  • Published : 2018.04.28

Abstract

Radioactive cesium($^{137}Cs$) can be released into the environment through severe nuclear accidents such as the Chernobyl and Fukushima, The $^{137}Cs$ is one of major monitoring radionuclides due to its chemical toxicity, ${\gamma}$ radiation and long half-life($t_{1/2}=30.2yrs$). It has been known well that illite adsorb selectively and strongly the cesium due to frayed edge sites. The quantity of the FES in the illite could be controlled by weathering processes. Therefore, this study was modified illite samples through artificial weathering in the laboratory to increase sorption efficiency for cesium. Abundant interlayer cations(i.e., K, Ca) were eluted within 1 day, while Si and Al were gradually released from the crystal structure. In addition, broad peaks of XRD indicated the occurrence of chemical weathering. The cesium sorption distribution coefficients increased up to approximately 2 times after the weathering. These results suggested that sorption capacity of illite could be enhanced for cesium through artificial weathering under low temperature.

체르노빌과 후쿠시마와 같은 원자력 사고를 통해 환경으로 방출되는 방사성 세슘($^{137}Cs$)은 화학적 독성과 ${\gamma}$ 선 방출, 그리고 긴 반감기($t_{1/2}=30.2$ 년) 때문에 주된 감시대상 방사성 핵종 가운데 하나이다. 1족 알칼리 금속인 세슘은 점토광물에 잘 흡착되며, 특히 운모류 광물인 일라이트와 특이적 흡착을 하는 것으로 알려져 있다. 이는 일라이트의 frayed edge sites 에 세슘이 선택적 흡착을 일으키기 때문이며, 이러한 흡착 지점은 일라이트의 풍화 정도 및 결정도에 따라 달라질 수 있다. 따라서 본 연구는 인공 풍화 실험(pH=2.0 at $50^{\circ}C$)을 통해 일라이트 표면을 개질함으로써 세슘의 흡착 성능을 증가시키기 위해 수행되었다. 일라이트의 층간 양이온들(K, Ca)은 반응 1일 이내에 다량 용출되는 반면, 결정 구조를 구성하는 Si와 Al은 점진적으로 용출되었다. 또한 일라이트 시료의 결정도가 감소하여 인위적인 화학적 풍화가 발생하였음을 지시하였다. 저농도의 세슘과 흡착 실험을 진행한 결과, 흡착분배계수가 기존에 비해 약 2배 증가하였다. 이러한 결과는 비교적 저온에서 손쉽게 일라이트의 흡착 성능을 개선할 수 있음을 암시한다.

Keywords

References

  1. Bellenger, J.P. and Staunton, S. (2008) Adsorption and desorption of $^{85}Sr$ and $^{137}Cs$ on reference minerals, with and without in organic and organic surface coatings. Journal of Environmental Radioactivity, v.99, p.831-840. https://doi.org/10.1016/j.jenvrad.2007.10.010
  2. BiBi, I., Singh, B. and Silvester, E. (2011) Dissolution of illite in saline-acidic solutions at $25^{\circ}C$. Geochimica et Cosmochimica Acta, v.75, p.3237-3249. https://doi.org/10.1016/j.gca.2011.03.022
  3. Chang, S., Choung, S., Um, W. and Chon, C.M. (2013) Effects of weathering processes on radioactive cesium sorption with mineral characterization in Korean nuclear facility site. Journal of The Mineralogical Society of Korea, v.26, p.209-218. https://doi.org/10.9727/jmsk.2013.26.3.209
  4. Cornell, R.M. (1993) Adsorption of cesium on minerals: A review. Journal of Radioanalytical and Nuclear Chemistry, Articles, v.171, p.483-500. https://doi.org/10.1007/BF02219872
  5. Eberl, D.D., Srodon, J., Lee, M., Nadeau, P.H. and Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness. American Mineralogists, v.72, p.914-934.
  6. Fujiwara, T., Saito, T., Muroya, Y., Sawahata, H., Yamashita, Y., Nagasaki, S., Okamoto, K., Takahashi, H., Uesaka, M., Katsumura, Y. and Tanaka, S. (2012) Isotopic ratio and vertical distribution of radionuclides in soil affected by theaccident of Fukushima Dai-ichi nuclear power plants. Journal of Environmental Radioactivity, v.113, p.37-44. https://doi.org/10.1016/j.jenvrad.2012.04.007
  7. Fuller, A.J., Shaw, S., Ward, M.B., Haigh, S.J., Mosselmans, J.F.W., Peacock, C.L., Stackhouse, S., Dent, A.J., Trivedi, D. and Burke, I.T. (2015) Caesium incorporation and retention in illite interlayers. Applied Clay Science, v.108, p.128-134. https://doi.org/10.1016/j.clay.2015.02.008
  8. Hazotte, A.A., Peron, O., Abdelouas, A., Montavon, G. and Lebeau, T. (2016) Microbial mobilization of cesium from illite: the role of organic acids and siderophores. Chemical Geology, v.428, p.8-14. https://doi.org/10.1016/j.chemgeo.2016.02.024
  9. Hinton T.G., Kaplan, D.I., Knox, A.S., Coughlin, D.P., Nascimento, R.V., Watson, S.I., Fletcher, D.E. and Koo, B.J. (2006) Use of illite clay for in situ remediation of $^{137}Cs$-contaminated water bodies: field demonstration of reduced biological uptake. Environmental Science and Technology, v.40, p.4500-4505. https://doi.org/10.1021/es060124x
  10. Jaynes, W.F. and Bigham, J.M. (1986) Multiple cationexchange capacity measurements on standard clays using a commercial mechanical extractor. Clays and Clay Minerals, v.34, p.93-98. https://doi.org/10.1346/CCMN.1986.0340112
  11. Kim, E.Y., Cho, H.G. and Lee, S.J. (2000) The copper adsorption onto Dongchang illite ore, Yeongdong-Gun, Choungchungbuk-Do. Fall Joint Conference of The Geological Science in Korea(Abstract). The Geological Society of Korea. Daejeon, October 27-28, p.87.
  12. Kim, J.Y., Hwang, S.H., Hong, Y.S., Huh, W. and Lee, W.S. (2005) Real-time XRD analysis of polystyrene/clay nanocomposites by in-situ polymerization. Polymer (Korea), v.29, p.87-90.
  13. Kim, Y. and Lee, E.J. (2004) The sorption properties of Cs on the surface of artificially weathered illite. Journal of The Mineralogical Society of Korea, v.17, p.235-243.
  14. Koh, S.M. (2008) Geological formation environment and mineralization age of the Daehyun sericite deposits in Bonghwa-gun, Gyeongsangbuk-do: Introduction of the new type in South Korea. Journal of The Geological Society of Korea, v.44, p.365-386.
  15. Kohler, S.J., Dufaud, F. and Oelkers, E.H. (2003) An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to $50^{\circ}C$. Geochimica et Cosmochimica Acta, v.67, p.3583-3594. https://doi.org/10.1016/S0016-7037(03)00163-7
  16. Konya, J., Nagy, N.M. and Nemes, Z. (2005) The effect of mineral composition on the sorption of cesium ions on geological formations. Journal of Colloid and Interface Science, v.290, p.350-356. https://doi.org/10.1016/j.jcis.2005.04.082
  17. Lee, C.H., Park, J.M. and Lee, M.G. (2015) Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A: adsorption isotherm and kinetics. Journal of Environmental Science International, v.24, p.151-162. https://doi.org/10.5322/JESI.2015.24.2.151
  18. Lee, S.H. and Kim, S.J. (2002) Formation mechanisms of 1:1 clay minerals by biotite weathering in a granitic gneiss. Journal of the Mineralogical Society of Korea, v.15, p.221-230.
  19. Long, H., Wu, P., Yang, L., Huang, Z., Zhu, N. and Hu, Z. (2014) Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. Journal of Colloid and Interface Science, v.428, p.295-301. https://doi.org/10.1016/j.jcis.2014.05.001
  20. Nakao, A., Thiry, Y., Funakawa, S. and Kosaki, T. (2008) Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil Science and Plant Nutrition, v.54, p.479-489. https://doi.org/10.1111/j.1747-0765.2008.00262.x
  21. Namiki, Y., Namiki, T., Ishii, Y., Koido, S., Nagase, Y., Tsubota, A., Tada, N. and Kitamoto, Y. (2012) Inorganic-organic magnetic nanocomposites for use in preventive medicine: a rapid and reliable elimination system for cesium. Pharmaceutical Research, v.29, p.1404-1418. https://doi.org/10.1007/s11095-011-0628-x
  22. Rajec, P., Sucha, V., Eberl, D.D., Srodon, J. and Elsass, F. (1999) Effect of illite particle shape on cesium sorption. Clays and Clay Minerals, v.47, p.755-760. https://doi.org/10.1346/CCMN.1999.0470610
  23. Shim, J.B. and Lee, Y.K. (2016) Growth and characterization of bulk GaN single crystals by basic ammonothermal method. Journal of the Korean Crystal Growth and Crystal Technology, v.26, p.58-61. https://doi.org/10.6111/JKCGCT.2016.26.2.058
  24. Spark, D.L., Page, A.L., Helmke, P.A. and Loeppert, R.H. (1996) Methods of soil analysis part 3 - chemical analysis. Soil Science Society of America.
  25. Staunton, S. and Roubaud, M. (1997) Adsorption of $^{137}Cs$ on montmorillonite and illite: effect of charge compensating cation, ionic strength, concentration of Cs, K and ulvic acid. Clays and Clay Minerals, v.45, p.251-260. https://doi.org/10.1346/CCMN.1997.0450213
  26. Tiwari, D., Lalhmunsiama, Choi, S.I. and Lee, S.M. (2014) Activated sericite: an efficient and effective natural clay material for attenuation of cesium from aquatic environment. Pedosphere, v.24(6), p.731-742. https://doi.org/10.1016/S1002-0160(14)60060-6
  27. Volchek, K., Miah, M.Y., Kuang, W., DeMaleki, Z. and Tezel, F.H. (2011) Adsorption of cesium on cement mortar from aqueous solutions. Journal of Hazardous Materials, v.194, p.331-337. https://doi.org/10.1016/j.jhazmat.2011.07.111