DOI QR코드

DOI QR Code

Antioxidant and Cytoprotective Effects of Socheongja and Socheong 2, Korean Black Seed Coat Soybean Varieties, against Hydrogen Peroxide-induced Oxidative Damage in HaCaT Human Skin Keratinocytes

HaCaT 인간 피부 각질세포에서 과산화수소 유도 산화 손상에 대한 소청자 및 소총2호의 항산화 및 세포보호 효능

  • Choi, Eun Ok (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine) ;
  • Kwon, Da Hye (Anti-Aging Research Center, Dongeui University) ;
  • Hwang, Hye-Jin (Department of Food and Nutrition, College of Natural Sciences and Human Ecology, Dongeui University) ;
  • Kim, Kook Jin (Genomine Advanced Biotechnology Research Institute, Genomine Inc.) ;
  • Lee, Dong Hee (Genomine Advanced Biotechnology Research Institute, Genomine Inc.) ;
  • Choi, Yung Hyun (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine)
  • 최은옥 (동의대학교 한의과대학 생화학교실 및 근.골격계 질환제어 융합연구실) ;
  • 권다혜 (동의대학교 항노화연구소) ;
  • 황혜진 (동의대학교 의료.보건.생활대학 식품영양학과) ;
  • 김국진 (제노마인(주) 첨단생명공학연구소) ;
  • 이동희 (제노마인(주) 첨단생명공학연구소) ;
  • 최영현 (동의대학교 한의과대학 생화학교실 및 근.골격계 질환제어 융합연구실)
  • Received : 2017.10.31
  • Accepted : 2017.11.18
  • Published : 2018.04.30

Abstract

Black soybeans are used as food sources as well as for traditional medicines because they contain an abundance of natural phenolic compounds. In this study, total phenolic contents (TPCs) of Korean black seed coat soybean varieties Socheongja (SCJ), Socheong 2 (SC2) and Cheongja 2 (CJ2) as well as their antioxidant capacities were investigated. Among them, TPCs were abundantly present in the order of CJ2$H_2O_2$-stimulated HaCaT human keratinocytes. Our results revealed that treatment with SCJ and SC2 prior to $H_2O_2$ exposure significantly increases the viability of HaCaT cells, indicating that the exposure of HaCaT cells to SCJ and SC2 conferred a protective effect against oxidative stress. SCJ and SC2 also effectively inhibited $H_2O_2$-induced apoptotic cell death through the blocking of mitochondrial dysfunction. SCJ and SC2 also attenuated the phosphorylation of Histone H2AX. Furthermore, they effectively induced the levels of thioredoxin reductase (TrxR) 1, a potent antioxidant enzyme, which is associated with the induction of nuclear transcription factor erythroid-2-like factor 2 (Nrf2); however, the protective effects of SCJ and SC2 were significantly reversed by Auranofin, a TrxR inhibitor. These results indicate that they have protective activity through the blocking of cellular damage related to oxidative stress via the Nrf2 signaling pathway. In conclusion, our study indicated that SCJ and SC2 might potentially serve as novel agents for the treatment and prevention of skin disorders caused by oxidative stress.

식품 원료로도 널리 애용되는 검은콩은 풍부한 천연 페놀 화합물을 함유하고 있기 때문에 기능성 소재로서의 개발에도 매우 유용한 자원이다. 본 연구에서는 3가지 검은콩 품종[소청자(SCJ), 소청2호(SC2) 및 청자2호(CJ2)]을 대상으로 TPCs과 항산화 능을 조사하였다. 그 중에서도 TPCs는 CJ2 $H_2O_2$ 처리에 의한 HaCaT 세포의 생존력 감소를 현저히 억제하여 산화적 스트레스에 대한 보호 효과가 있음을 알 수 있었다. SCJ와 SC2 전처리는 또한 HaCaT 세포에서 mitochondrial dysfunction의 차단과 pro-apoptotic Bax의 발현 변화의 정상화를 통해 $H_2O_2$에 의하여 유도된 apoptosis를 효과적으로 억제하였으며, DNA 손상에 대한 보호 효과와 연관성이 있었다. 또한 SCJ와 SC2는 Nrf2와 연관된 TrxR1의 발현을 효과적으로 유도하였으나, 산화적 스트레스에 대한 SCJ와 SC2의 보호 효과는 TrxR 억제제에 의하여 상쇄되었다. 이러한 결과는 SCJ와 SC2가 Nrf2 신호전달 경로 활성을 통하여 산화적 스트레스와 관련된 세포 손상을 차단함으로써 세포 보호 활성을 갖는다는 것을 의미한다. 결론적으로, SCJ와 SC2는 산화스트레스로 인한 피부 질환의 치료와 예방을 위한 응용 가능성이 높음을 보여주었다.

Keywords

References

  1. Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. and Tang, X. 2017. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta. 1863, 585-597. https://doi.org/10.1016/j.bbadis.2016.11.005
  2. Alan Mitteer, R., Wang, Y., Shah, J., Gordon, S., Fager, M., Butter, P. P., Jun, K. H., Guardiola-Salmeron, C., Carabe-Fernandez, A. and Fan, Y. 2015. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci. Rep. 5, 13961.
  3. Benzie, I. F. and Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292
  4. Blios, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1158-1200.
  5. Cebula, M., Schmidt, E. E. and Arner, E. S. 2015. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox. Signal. 23, 823-853. https://doi.org/10.1089/ars.2015.6378
  6. Ceni, E., Mello, T. and Galli, A. 2014. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J. Gastroenterol. 20, 17756-17772. https://doi.org/10.3748/wjg.v20.i47.17756
  7. Chen, Z., Wang, D., Liu, X., Pei, W., Li, J., Cao, Y., Zhang, J., An, Y., Nie, J. and Tong, J. 2015. Oxidative DNA damage is involved in cigarette smoke-induced lung injury in rats. Environ. Health Prev. Med. 20, 318-324. https://doi.org/10.1007/s12199-015-0469-z
  8. Cha, H., Lowe, J. M., Li, H., Lee, J. S., Belova, G. I., Bulavin, D. V. and Fornave, A. J. Jr. 2010. Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res. 70, 4112-4122. https://doi.org/10.1158/0008-5472.CAN-09-4244
  9. Choi, Y. H., Kim, M. J., Lee, S. Y., Lee, Y. N., Chi, G. Y., Eom, H. S., Kim, N. D. and Choi, B. T. 2002. Phosphorylation of p53, induction of Bax and activation of caspases during $\beta$-lapachone-mediated apoptosis in human prostate epithelial cells. Int. J. Oncol. 21, 1293-1299.
  10. Chowdhury, D., Keogh, M. C., Ishii, H., Peterson, C. L., Buratowski, S. and Lieberman, J. 2005. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol. Cell. 20, 801-809. https://doi.org/10.1016/j.molcel.2005.10.003
  11. Espinosa-Diez, C., Miguel, V., Mennerich, D., Kietzmann, T., Sanchez-Perez, P., Cadenas, S. and Lamas, S. 2015. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 6, 183-197. https://doi.org/10.1016/j.redox.2015.07.008
  12. Fu, P. P., Xia, Q., Sun, X. and Yu, H. 2012. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 30, 1-41. https://doi.org/10.1080/10590501.2012.653887
  13. Jang, E. H., Moon, J. S., Ko, J. H., Ahn, C. W., Lee, H. H., Shin, J. K., Park, C. S. and Kang, J. H. 2008. Novel black soy peptides with antiobesity effects: activation of leptin-like signaling and AMP-activated protein kinase. Int. J. Obes (Lond). 32, 1161-1170. https://doi.org/10.1038/ijo.2008.60
  14. Jang, Y. S. and Jeong, J. M. 2001. Anti-obesity effects of black bean Chungkugjang extract in 3T3-L1 adipocytes and obese mice induced by high fat diet. J. Kor. Soc. Food Sci. Nutr. 40, 1235-1243.
  15. Jhan, J. K., Chung, Y. C., Chen, G. H., Chang, C. H., Lu, Y. C. and Hsu, C. K. 2016. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity. Int. J. Cosmet. Sci. 38, 319-324. https://doi.org/10.1111/ics.12300
  16. Jung, J. H. and Kim, H. S. 2013. The inhibitory effect of black soybean on hepatic cholesterol accumulation in high cholesterol and high fat diet-induced non-alcoholic fatty liver disease. Food Chem. Toxicol. 60, 404-412. https://doi.org/10.1016/j.fct.2013.07.048
  17. Kang, J. S., Kim, G. Y., Kim, B. W. and Choi, Y. H. 2017. Antioxidative effects of diallyl trisulfide on hydrogen peroxide-induced cytotoxicity through regulation of nuclear factor-E2-related factor-mediated thioredoxin reductase 1 expression in C2C12 skeletal muscle myoblast cells. Gen. Physiol. Biophys. 36, 129-139. https://doi.org/10.4149/gpb_2016042
  18. Kammeyer, A. and Luiten, R. M. 2015. Oxidation events and skin aging. Ageing Res. Rev. 21, 16-29. https://doi.org/10.1016/j.arr.2015.01.001
  19. Kensler, T. W., Wakabayashi, N. and Biswal, S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
  20. Keum, Y. S. and Choi, B. Y. 2014. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules 19, 10074-10089. https://doi.org/10.3390/molecules190710074
  21. Kim, K., Lim, K. M., Kim, C. W., Shin, H. J., Seo, D. B., Lee, S. J., Noh, J. Y., Bae, O. N., Shin, S. and Chung, J. H. 2011. Black soybean extract can attenuate thrombosis through inhibition of collagen-induced platelet activation. J. Nutr. Biochem. 22, 964-970. https://doi.org/10.1016/j.jnutbio.2010.08.008
  22. Kim, S. C., Kwon, H. S., Kim, C. H., Kim, H. S., Lee, C. Y. and Cho, S. J. 2016. Comparison of antioxidant activities of pileus and stipe from white beech mushrooms (Hypsizygus marmoreus). J Life Sci. 26, 928-935. https://doi.org/10.5352/JLS.2016.26.8.928
  23. Korea Seed & Variety Service, https://www.seed.go.kr
  24. Lee, M. J., Chung, I. M., Kim, H. and Jung, M. Y. 2015. High resolution LC-ESI-TOF-mass spectrometry method for fast separation, identification, and quantification of 12 isoflavones in soybeans and soybean products. Food Chem. 176, 254-262. https://doi.org/10.1016/j.foodchem.2014.12.073
  25. Li, X., Wu, X. and Huang, L. 2009. Correlation between antioxidant activities and phenolic contents of radix Angelicae sinensis (Danggui). Molecules 14, 5349-5361. https://doi.org/10.3390/molecules14125349
  26. Loh, K. P., Huang, S. H., De Silva, R., Tan, B. K. and Zhu, Y. Z. 2006. Oxidative stress: apoptosis in neuronal injury. Curr. Alzheimer. Res. 3, 327-337. https://doi.org/10.2174/156720506778249515
  27. Magalhaes, M. S., Fechine, F. V., Macedo, R. N., Monteiro, D. L., Oliveira, C. C., Brito, G. A., Moraes, M. E. and Moraes, M. O. 2008. Effect of a combination of medium chain triglycerides, linoleic acid, soy lecithin and vitamins A and E on wound healing in rats. Acta. Cir. Bras. 23, 262-269. https://doi.org/10.1590/S0102-86502008000300009
  28. Park, Y. and Gerson, S. L. 2005. DNA repair defects in stem cell function and aging. Annu. Rev. Med. 56, 495-508. https://doi.org/10.1146/annurev.med.56.082103.104546
  29. Patwardhan, J. and Bhatt, P. 2016. Flavonoids derived from Abelmoschus esculentus attenuates UV-B induced cell damage in human dermal fibroblasts through Nrf2-ARE pathway. Pharmacogn. Mag. 12, S129-138. https://doi.org/10.4103/0973-1296.182175
  30. Piao, M. J., Lee, N. H., Chae, S. and Hyun, J. W. 2012. Eckol inhibits ultraviolet B-induced cell damage in human keratinocytes via a decrease in oxidative stress. Biol. Pharm. Bull. 35, 873-880. https://doi.org/10.1248/bpb.35.873
  31. Poljsak, B. and Dahmane, R. 2012. Free radicals and extrinsic skin aging. Dermatol. Res. Pract. 2012, 135206.
  32. Punchard, N. A. and Kelly, F. J. 1996. Free radicals. A practical approach. Oxford University Press, Oxford. 1-8.
  33. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 231-1237.
  34. Reed, J. C. 2000. Mechanisms of apoptosis. Am. J. Pathol. 157, 1415-1430. https://doi.org/10.1016/S0002-9440(10)64779-7
  35. Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P. and Yaffee, M. 1995. Oxidants in mitochondria: from physiology to diseases. Biochim. Biophys. Acta. 1271, 67-74. https://doi.org/10.1016/0925-4439(95)00012-S
  36. Rural Development Administration National Institute of Crop Science, Republic of Korea, www.nics.go.kr
  37. Sehitoglu, M. H., Farooqi, A. A., Qureshi, M. Z., Butt, G. and Aras, A. 2014. Anthocyanins: targeting of signaling networks in cancer cells. Asian Pac. J. Cancer Prev. 15, 2379-2381. https://doi.org/10.7314/APJCP.2014.15.5.2379
  38. Slavin, M. and Yu, L. L. 2012. A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans. Food Chem. 135, 2789-2795. https://doi.org/10.1016/j.foodchem.2012.06.043
  39. Trouba, K. J., Hamadeh, H. K., Amin, R. P. and Germolec, D. R. 2002. Oxidative stress and its role in skin disease. Antioxid. Redox. Signal. 4, 665-673. https://doi.org/10.1089/15230860260220175
  40. Wei, Y. S., Wung, B. S., Lin, Y. C. and Hsieh, C. W. 2009. Isolating a cytoprotective compound from Ganoderma tsugae: effects on induction of Nrf-2-related genes in endothelial cells. Biosci. Biotechnol. Biochem. 73, 1757-1763. https://doi.org/10.1271/bbb.90098
  41. Wolfle, U., Seelinger, G., Bauer, G., Meinke, M. C., Lademann, J. and Schempp, C. M. 2014. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol. Physiol. 27, 316-332. https://doi.org/10.1159/000360092
  42. www.nongsaro.go.kr
  43. Xu, B. and Chang, S. K. 2008. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J. Agric. Food Chem. 56, 8365-8373. https://doi.org/10.1021/jf801196d
  44. Yates, M. S. and Kensler, T. W. 2007. Chemopreventive promise of targeting the Nrf2 pathway. Drug News Perspect. 20, 109-117. https://doi.org/10.1358/dnp.2007.20.2.1083437
  45. Yoon, J. J., Jeong, J. W., Choi, E. O., Kim, M. J., Hwang-Bo, H., Kim, H. J., Hong, S. H., Park, C., Lee, D. H. and Choi, Y. H. 2017. Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes. EXCLI J. 16, 426-438.
  46. Ziberna, L., Lunder, M., Moze, S., Vanzo, A., Tramer, F., Passamonti, S. and Drevensek, G. 2010. Acute cardioprotective and cardiotoxic effects of bilberry anthocyanins in ischemia-reperfusion injury: beyond concentration-dependent antioxidant activity. Cardiovasc Toxicol. 10, 283-294. https://doi.org/10.1007/s12012-010-9091-x