DOI QR코드

DOI QR Code

Portulaca oleracea L. Extract Lowers Postprandial Hyperglycemia by Inhibiting Carbohydrate-digesting Enzymes

쇠비름(Portulaca oleracea L.) 추출물의 탄수화물 소화 효소 저해와 식후 고혈당 완화 효과

  • Park, Jae-Eun (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2017.10.27
  • Accepted : 2017.12.05
  • Published : 2018.04.30

Abstract

Postprandial hyperglycemia plays an important role in the development of Type 2 Diabetes and diabetic complications. Controlling postprandial hyperglycemia is the most important factor for reducing the risks of diabetic complications in Type 2 diabetic patients. This study was designed to determine whether Portulaca oleracea L. extract suppresses the activation of carbohydrate-digesting enzymes, and lowers postprandial hyperglycemia in diabetic mice through streptozotocin. P. oleracea was extracted with either 80% ethanol (PEE) or water (PWE), and the extract solutions were concentrated. The ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibition assays were performed using the chromogenic method. Normal mice and STZ-induced diabetic mice were orally treated with PEE, PWE (300 mg/kg of body weight) or acarbose (100 mg/kg of body weight), with soluble starch (2 g/kg of body weight). The ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitory effectiveness by PEE were markedly more effective than PWE, and both extracts indicated a higher effectiveness than the acarbose (positive control). The rise in postprandial blood glucose due to starch loading was markedly inhibited in the PEE group when compared to the control group in diabetic and normal mice. Furthermore, the area under the concentration-time curve values were markedly declined by the PEE injection in the diabetic group when compared to that exerted for the control group. These results demonstrate that P. oleracea extracts lower postprandial hyperglycemia by inhibiting carbohydrate-digesting enzymes, and that the ethanol extract is more efficacious than the water extract.

식후고혈당은 제 2형 당뇨병의 발병에 부정적인 영향을 미치고 미세혈관 및 대혈관 질환 등의 당뇨병 합병증 유발과 밀접한 관계가 있다. 따라서 식후고혈당을 조절하는 것이 당뇨병 합병증의 위험을 줄이는 가장 중요한 요소이다. 식후고혈당은 소장에서 ${\alpha}$-글루코시다아제와 같은 탄수화물 소화 효소를 저해함으로써 조절될 수 있다. 이에 본 연구는 쇠비름 에탄올 추출물(PEE)과 물 추출물(PWE)이 탄수화물 소화 효소를 저해하고, 당뇨병 마우스에서 식후 고혈당을 강하시키는 효과에 대해 조사하였다. ${\alpha}$-글루코시다아제와 ${\alpha}$-아밀라아제에 대한 저해효과는 두 추출물 모두 양성대조군인 acarbose보다 더 효과적이었으며, PEE에 의한 ${\alpha}$-글루코시다아제 저해 효과가 PWE 보다 더 효과적이었다. Diabetic mice에 전분(2 g/kg)을 투여한 후의 혈당 증가는 30, 60, 120분에 각각 383.7, 429.3, 360.2 mg/dL로 나타났고, 전분(2 g/kg)과 PEE 또는 PWE 추출물(300 mg/Kg)을 투여한 후의 혈당 증가는 30, 60, 120분에 각각 337.0, 368.5, 290.1 mg/dL과 365.8, 379.2, 324.3 mg/dL로 나타나, PEE 추출물 투여군이 대조군에 비해 식후 혈당 강하가 효과적으로 나타남을 알 수 있었다. 이러한 결과는 쇠비름 추출물이 탄수화물 소화효소를 저해함으로써 식후 고혈당을 완화시키고, 특히 쇠비름 에탄올 추출물(PEE)이 쇠비름 물 추출물(PWE) 보다 식후 고혈당을 완화시키는데 더욱 효과가 있는 것으로 나타났다.

Keywords

References

  1. Barakat, L. A. and Mahmoud, R. H. 2011. The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. N. Am. J. Med. Sci. 3, 351-357.
  2. Baron, A. D. 1998. Postprandial hyperglycemia and $\alpha$-glucosidase inhibitors. Diabetes Res. Clin. Pract. 40, 51-55. https://doi.org/10.1016/S0168-8227(98)00043-6
  3. Bhandari, M. R., Anurakkun, N. J., Hong, G. and Kawabata, J. 2008. $\alpha$-Glucosidase and $\alpha$-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 106, 247-252. https://doi.org/10.1016/j.foodchem.2007.05.077
  4. Ceriello, A. 2005. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54, 1-7. https://doi.org/10.2337/diabetes.54.1.1
  5. Chai, T. T., Kwek, M. T., Ong, H. C. and Wong, F. C. 2015. Water fraction of edible medicinal fern Stenochlaena palustris is a potent $\alpha$-glucosidase inhibitor with concurrent antioxidant activity. Food Chem. 186, 26-31. https://doi.org/10.1016/j.foodchem.2014.12.099
  6. Chen, J., Shi, Y. P. and Liu, J. Y. 2003. Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography. J. Chromatogr. A. 1003, 127-132. https://doi.org/10.1016/S0021-9673(03)00786-6
  7. Cuvelier, M. E., Richard, H. and Berset, C. 1996. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil. Chem. Soc. 73, 645-652. https://doi.org/10.1007/BF02518121
  8. Dennis, J. W., Laferte, S., Waghorne, C., Breitman, M. L. and Kergel, R. S. 1987. Beta 1-6 Branching of asn-linked oligosaccharides is directly associated with metastasis. Science 236, 582-585. https://doi.org/10.1126/science.2953071
  9. Haller, H. 1998. The clinical importance of postprandial glucose. Diabetes Res. Clin. Pract. 40, 43-49 https://doi.org/10.1016/S0168-8227(98)00042-4
  10. Hanefeld, M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J. Diabetes Complicat. 12, 228-237. https://doi.org/10.1016/S1056-8727(97)00123-2
  11. Honeycutt, A. A., Boyle, J. P., Broglio, K. R., Thompson, T. J., Hoerger, T. J., Geiss, L. S. and Narayan, K. M. 2003. A dynamic Markov model for forecasting diabetes prevalence in the United States through 2050. Health Care Manag. Sci. 6, 155-164. https://doi.org/10.1023/A:1024467522972
  12. Inoue, I., Takahashi, K., Noji, S., Awata, T., Negishi, K. and Kataya-ma, S. 1997. Acarbose controls postprandial hyperproinsulinemia in non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 36, 143-151. https://doi.org/10.1016/S0168-8227(97)00045-4
  13. Kamal, U., Abdul, S. J., Eaqub, A. and Mohd, R. I. 2012. Evaluation of Antioxidant properties and mineral composition of purslane (portulaca oleracea) at different growth stages. Int. J. Mol. Sci. 13, 10257-10267. https://doi.org/10.3390/ijms130810257
  14. Kawamura-Konishi, Y., Watanabe, N., Saito, M., Nakajima, N., Sakaki, T., Katayama, T. and Enomoto, T. 2012. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. J. Agric. Food Chem. 60, 5565-5570. https://doi.org/10.1021/jf300165j
  15. Kawano, H., Motoyama, T., Hirashima, O., Hirai, N., Miyao, Y., Sakamoto, T., Kugiyama, K., Ogawa, H. and Yasue, H. 1999. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J. Am. Coll. Cardiol. 34, 146-154. https://doi.org/10.1016/S0735-1097(99)00168-0
  16. Kim, J. S. 2004. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J. Kor. Soc. Food Sci. Nutr. 33, 1133-1138. https://doi.org/10.3746/jkfn.2004.33.7.1133
  17. Kim, M. J. 2011. Studies on the Biological Activities of Purslane(Portulaca oleracea), MS thesis, University of Gyeongsang, Jinju, Gyeongnam, korea.
  18. Kin, J. E., Joo, S. I., Seo, J. H. and Lee, S. P. 2009. Antioxidant and $\alpha$-glucosidase inhibitory effect of Tartary Buckwheat extract obtained by the treatment of different solvents and enzymes. J. Kor. Soc. Food Sci. Nutr. 38, 989-995. https://doi.org/10.3746/jkfn.2009.38.8.989
  19. Kwon, Y. R., Cho, S. M., Hwang, S. P., Kwon, G. M., Kim, J. W. and Youn, K. S. 2014. Antioxidant, physiological activities, and acetylcholinesterase inhibitory activity of Portulaca oleracea extracts with different extraction methods. J. Kor. Soc. Food Sci. Nutr. 43, 389-396. https://doi.org/10.3746/jkfn.2014.43.3.389
  20. Lei, X., Li, J., Liu, B., Zhang, N. and Liu, H. 2015. Separation and identification of four new compounds with antibacterial activity from Portulaca oleracea L. Molecules 20, 16375-16387. https://doi.org/10.3390/molecules200916375
  21. Li, Y., Wen, S., Kota, B. P., Peng, G., Li, G. Q., Yamahara, J. and Roufogalis, B. D. 2005. Punica granatum flower extract, a potent $\alpha$-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J. Ethnopharmacol. 99, 239-244. https://doi.org/10.1016/j.jep.2005.02.030
  22. Lu, Y., Demleitner, M. F., Song, L., Rychlik, M. and Huang, D. 2016. Oligomeric proanthocyanidins are the active compounds in Abelmoschus esculentus Moench for its $\alpha$-amylase and $\alpha$-glucosidase inhibition activity. J. Funct. Foods 20, 463-471. https://doi.org/10.1016/j.jff.2015.10.037
  23. Palaniswamya, U. R., Bible, B. B. and McAvoy, R. J. 2004. Oxalic acid concentrations in Purslane (Portulaca oleraceae L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics. Sci. Hortic. 102, 267-275. https://doi.org/10.1016/j.scienta.2004.01.006
  24. Pirart, L. 1978. Diabetes mellitus and its degenerative complieations: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care 1, 168-172. https://doi.org/10.2337/diacare.1.3.168
  25. Puls, W., Keup, U., Krause, H. P., Thomas, G. and Hoffmeister, F. 1997. Glucosidase inhibition. A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwissenschaften 64, 536-537.
  26. Ratner, R. E. 2001. Controlling postprandial hyperglycemia. Am. J. Cardiol. 88, 26-31. https://doi.org/10.1016/S0002-9149(01)01834-3
  27. Saito, N., Sakai, H., Suzuki, S., Sekihara, H. and Yajima, Y. 1998. Effect of an $\alpha$-glucosidase inhibitor (voglibose), in combination with sulphonilureas, on glycaemic control in type 2 diabetes patients. J. Int. Med. Res. 26, 219-232. https://doi.org/10.1177/030006059802600501
  28. Scott, L. J. and Spencer, C. M. 2000. Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs 59, 521-549. https://doi.org/10.2165/00003495-200059030-00012
  29. Standl, E., Baumgartl, H. J., Fuchtenbusch, M. and Stemplinger, J. 1999. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes. Metab. 1, 215-220. https://doi.org/10.1046/j.1463-1326.1999.00021.x
  30. Stern, J. L., Hagerman, A. E., Steinberg, P. D. and Mason, P. K. 1996. Phlorotannins-protein interactions. J. Chem. Ecol. 22, 1877-1899. https://doi.org/10.1007/BF02028510
  31. Tai, E. S., Lim, S. C., Tan, B. Y., Chew, S. K., Heng, D. and Tan, C. E. 2000. Screening for diabetes mellitus-a two-step approach in individuals with impaired fasting glucose improves detection of those at risk of complications. Diabet. Med. 17, 771-775. https://doi.org/10.1046/j.1464-5491.2000.00382.x
  32. Temelkova-Kurktschiev, T. S., Koehler, C., Henkel, E., Leonhardt, W., Fuecker, K. and Hanefeld, M. 2004. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 23, 1830-1834.
  33. Watanabe, J., Kawabata, J., Kurihara, H. and Niki, R. 1997. Isolation and identification of alpha-glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 177-178. https://doi.org/10.1271/bbb.61.177
  34. West, I. C. 2000. Radicals and oxidative stress in diabetes. Diabet. Med. 17, 171-180. https://doi.org/10.1046/j.1464-5491.2000.00259.x
  35. Yazici, I., Turkan, I., Sekmen, A. H. and Demiral, T. 2007. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 61, 49-57. https://doi.org/10.1016/j.envexpbot.2007.02.010
  36. Yen, G. C., Chen, H. Y. and Peng, H. H. 2001. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of emerging edible plants. Food Chem. Toxicol. 39, 1045-1053. https://doi.org/10.1016/S0278-6915(01)00053-9
  37. Zhang, J. Y., Chen, X. G. and Hu, Z. D. 2002. Quantification of noradrenaline and dopamine in Portulaca oleracea L. by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chim. Acta. 471, 203-209. https://doi.org/10.1016/S0003-2670(02)00775-4