DOI QR코드

DOI QR Code

Analysis of error data generated by prospective teachers in programming learning

예비교사들이 프로그래밍 학습 시 발생시키는 오류 데이터 분석

  • Moon, Wae-shik (Dept. of Computer Education, Chinju National University of Education)
  • 문외식 (진주교육대학교 컴퓨터교육과)
  • Received : 2018.02.14
  • Accepted : 2018.02.23
  • Published : 2018.04.30

Abstract

As a way to improve the software education ability of the pre - service teachers, we conducted programming learning using two types of programming tools (Python and Scratch) at the regular course time. In programming learning, various types of errors, which are factors that continuously hinder interest, achievement and creativity, were collected and analyzed by type. By using the analyzed data, it is possible to improve the ability of pre-service teachers to cope with the errors that can occur in the software education to be taught in the elementary school, and to improve the learning effect. In this study, logic error (37.63%) was the most frequent type that caused the most errors in programming in both conventional language that input text and language that assembles block. In addition, the detailed errors that show a lot of differences in the two languages are the errors of Python (14.3%) and scratch (3.5%) due to insufficient use of grammar and other errors.

예비교사들의 소프트웨어교육 능력을 키우기 위한 방안으로 정규 교과시간에 두 종류의 프로그래밍 도구(파이썬, 스크래치)를 이용하여 프로그래밍 학습을 각각 실시하였다. 프로그래밍 학습에서 지속적으로 흥미와 성취감 및 창의성을 저해하는 요소인 각종 오류들의 종류들을 수집하고 유형별로 분석하였다. 분석된 자료들을 활용하면 향후 예비교사들이 초등학교에서 가르쳐야 할 소프트웨어교육에서 발생 가능한 오류들을 줄일 수 있도록 대처할 수 있는 능력을 키울 수 있어 최적의 학습효과를 올릴 수 있다. 본 연구에서는 평균적으로 텍스트를 입력하는 기존 형태의 언어와 불럭을 조립하는 형태의 언어 모두에서 프로그래밍 시 가장 많은 오류를 발생시키는 유형이 논리오류(37.63%)로 가장 많았다. 또한, 두 언어에서 차이점이 많이 나타나는 세부적인 오류는 문법 등의 사용미숙, 오타 등으로 인한 단순오류가 파이썬이 14.3%, 스크래치가 3.5%로 큰 차이가 있음을 알 수 있었다.

Keywords

References

  1. Amrit L. Goal Software Error Dection Model with Application, The journal of system and software Vol.127, No. 4, pp. 17-25, 2013.
  2. Andy Oram, Greg, Wilson(2010). Making Software : O'reilly Media.
  3. Georage rawvski, Identification of factors which cause software failure, proceedings Annual reliability and maintainability IEEE Symp, 2013.
  4. Hyungshin Choi(2014). Computational Thinking Gramework-based Analysis of After-school Scratch Team project Experience Journal of the Korean Association of Information Education, 18-4, 549-553. https://doi.org/10.14352/jkaie.2014.18.4.549
  5. Jun yongju(2017), "A Study on the Cognitive, Psychomotor and Affective Aspects of Software Education by Exploring Computational Thinking", Korea Computer Education Association Summer conference (2017).
  6. Kang jungsuk(2016), The status of software education in preparation for the fourth industrial revolution era, Jeju Special Self-Governing Province Office of Education.
  7. Littlewood, B and Miller D. Software Reliability and safety, Elsevier applied science, London, 1993.
  8. Moon, W. S(2006). Analyzing the types of errors that elementary students encounter in programming learning. Korea Computer Information Association Vol 11, No. 2, 2006, pp. 324-326
  9. Muneo Takahssi and Yuki Kamyachi, An Empirical Study of A Model for Program Error Prediction, Proceedings of 8th IEEE Conference on Software Engineering", pp. 331
  10. Myron Lipow, Prediction of software failure, Journ of system and software, Vol 15, No 4, pp. 31 - 35, 2012.
  11. Rost, Johann, Glass(2011). Dark Side of Software Engineering : Wley-IEE Computer Socity PR
  12. Shin Seung-yong(2003). Development of information gifted discrimination tool based on creativity and information science characteristics, Korean Computer Education Association Summer Lecture(2).
  13. Youngsik Jeong, Kapsu Kim, Inkee Jeog, Hyunbae Kim, Chul Kim, Jeomgsu Yu, Chongwoo Kim, Myunghui Hong(2015). A Development of the Software Education Curriculum Model for Elementary Students. Journal of The Korean Association of Information Education. 19(4). 467-475. https://doi.org/10.14352/jkaie.2015.19.4.467
  14. Yongra Kwon(2010). Software Testing : Seng leng Publishing Co.

Cited by

  1. 예비교사를 위한 게임 프로그래밍 교육모델 4E 개발 vol.23, pp.6, 2018, https://doi.org/10.14352/jkaie.2019.23.6.561
  2. Structural Software Education Model for Non-majors : Focused on Python vol.20, pp.12, 2018, https://doi.org/10.9728/dcs.2019.20.12.2423
  3. 예비교사의 블록 기반 프로그래밍 교육을 위한 협업전략 탐구 vol.24, pp.4, 2018, https://doi.org/10.14352/jkaie.2020.24.4.401
  4. 공공데이터 분석 기반 여성안전 시설지수 시각화: 서울시 중심으로 vol.19, pp.4, 2021, https://doi.org/10.14400/jdc.2021.19.4.019
  5. 온라인 학습 환경에서 발생하는 파이썬 프로그래밍 오류 사례 분석 vol.7, pp.3, 2018, https://doi.org/10.17703/jcct.2021.7.3.247