DOI QR코드

DOI QR Code

줄기 세포 이식 치료를 통한 의료 산업적 융합효과

The convergence effect of medical industry through stem cell implant treatment

  • 이태훈 (남서울대학교 응급구조학과)
  • Lee, Tae-Hoon (Department of Emergency Medical Service, Namseoul University)
  • 투고 : 2018.02.01
  • 심사 : 2018.04.20
  • 발행 : 2018.04.30

초록

본 연구는 이식된 줄기세포들이 혈관용 클립압박으로 유도된 척수경색 동물들에서 행동학적 결핍을 감소시키는 연구를 진행하였다. 흉수신경 9번과 10번에 척수 손상후 5일후에 배아줄기세포 이식을 통해서 배아줄기세포가 경색부위를 채워지게 되므로 이식후 손상부위의 조직학적 감소와 신경세포군의 조직학적 재생을 증명하는데 중점을 두었다. 본 연구를 통해 마우스 배아줄기세포의 이식이 중증 척수 손상후 행동학적 발달을 보여주는 명백한 결과들을 도출하였음을 보여주고 있다. 이러한 마우스 배아줄기세포는 신경학적 손상에 대한 치료로서 사용될 수 있는 처치법이다. 결론적으로, 줄기세포 적용은 손상조직을 재생시켜서 기능적, 행동적 향상에 기여할 수 있기에 다양한 줄기세포 치료법을 통해 임상적 적용을 위한 중요한 치료법이 될 수 있다.

Our experiment studied that grafted stem cells reduced behavioral deficiency in rodent animal models of clip compressive surgery inducing spinal cord infarction. Our research proved the effect of embryonic stem cells to the spinal cord infarction caused by compressing T9-10 with an aneurysm clip, focusing the application of grafted stem cells for reduction of infarction and regeneration of spinal cord nervous injury. Therefore, our research suggests manifest results that implantation of mouse embryonic stem cell could show behavioral improvement after severe spinal cord damage. Therefore, mouse embryonic stem cell (mESC) could be useful application for the method in neurological injury. Conclusively, stem cell implant therapy may enhance the effectiveness of stem cell implant for central nervous system injury.

키워드

참고문헌

  1. T. M. Myckatyn & S. E. Mackinnon. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. (2004). Transplant Immunology 12, 343-358. DOI : 10.1016/j.trim.2003.12.017
  2. Y. Ogawa, K. Sawamoto, T. Myata & H. Okano. (2002). Transplantation of in vitro-expanded fetal neural progenytor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. Journal of Neuroscience Research 69, 925-933. DOI : 10.1002/jnr.10341
  3. J. Hu, Q. Yu, L. Xie & H. Zhu. (2016). Targeting the blood-spinal cord barrier: A therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Science 158, 1-6. DOI : 10.1016/j.lfs.2016.06.018
  4. A. Saghazadeh & N. Rezaei. (2017). The role of timing in the treatment of spinal cord injury. Biomedicine & Pharmacology 92, 128-139. DOI : 10.1016/j.biopha.2017.05.048
  5. N. Zareen, M. Shinozaki, D. Ryan, H. Alexander & J. H. Martin. (2017). Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Experimental Neurology 297, 179-189. DOI : 10.1016/j.expneurol.2017.08.004
  6. O. Steward & R. Willenberg. (2017). Rodent spinal cord injury models for studies of axon regeneration. Experimental Neurology 287, 374-383. DOI : 10.1016/j.expneurol.2016.06.029
  7. C. Zhang, J. Ma, L. Fan, Y. Zou & J. Song. (2015). Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Tissue and Cell 47(3), 291-300. DOI : 10.1016/j.tice.2015.03.007
  8. A. Muheremu, J. Peng & Q. Ao. (2016). Stem cell based therapies for spinal cord injury. Tissue and Cell 48, 328-333. DOI : 10.1016/j.tice.2016.05.008
  9. T. Setoguchi, K. Nakashima, T. Takizawa & T. Taga. (2004). Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Experimental Neurology 189, 33-44. DOI : 10.1016/j.expneurol.2003.12.007
  10. Y. Ohta, A. Hamaguchi, M. Ootaki, M. Watanabe & M. Takenaga. (2017). Intravenous infusion of adipose- derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy 19(7), 839-848. DOI : 10.1016/j.jcyt.2017.04.002
  11. T. Morita, M. Sasaki, Y. K. Sasaki, M. Nakazaki & O. Honmou. (2016). Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 335, 221-231. DOI : 10.1016/j.neuroscience.2016.08.037
  12. C. P. Hofstetter, E. J. Schwarz, D. Hess, D. J. Prockop & L. Olson. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceeding National Academics Science 99, 2199-2204. DOI : 10.1073/pnas.042678299
  13. M. Ohta, Y. Suzuki, T. Noda, K. Kataoka, S. Kuno & C. Ide. (2004). Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Experimental Neurology 187, 266-278. DOI : 10.1016/j.expneurol.2004.01.021
  14. Y. Jin, J. Bouyer, C. Haas & I. Fischer. (2014). Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat. Experimental Neurology 257, 57-69. DOI : 10.1016/j.expneurol.2014.04.016
  15. R. Lv, N. Mao, J. Wu, C. Lu & Z. Shi. (2015). Neuroprotective effect of allicin in a rat model of acute spinal cord injury. Life Science 143, 114-123. DOI : 10.1016/j.lfs.2015.11.001