참고문헌
- T. M. Myckatyn & S. E. Mackinnon. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. (2004). Transplant Immunology 12, 343-358. DOI : 10.1016/j.trim.2003.12.017
- Y. Ogawa, K. Sawamoto, T. Myata & H. Okano. (2002). Transplantation of in vitro-expanded fetal neural progenytor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. Journal of Neuroscience Research 69, 925-933. DOI : 10.1002/jnr.10341
- J. Hu, Q. Yu, L. Xie & H. Zhu. (2016). Targeting the blood-spinal cord barrier: A therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Science 158, 1-6. DOI : 10.1016/j.lfs.2016.06.018
- A. Saghazadeh & N. Rezaei. (2017). The role of timing in the treatment of spinal cord injury. Biomedicine & Pharmacology 92, 128-139. DOI : 10.1016/j.biopha.2017.05.048
- N. Zareen, M. Shinozaki, D. Ryan, H. Alexander & J. H. Martin. (2017). Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Experimental Neurology 297, 179-189. DOI : 10.1016/j.expneurol.2017.08.004
- O. Steward & R. Willenberg. (2017). Rodent spinal cord injury models for studies of axon regeneration. Experimental Neurology 287, 374-383. DOI : 10.1016/j.expneurol.2016.06.029
- C. Zhang, J. Ma, L. Fan, Y. Zou & J. Song. (2015). Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Tissue and Cell 47(3), 291-300. DOI : 10.1016/j.tice.2015.03.007
- A. Muheremu, J. Peng & Q. Ao. (2016). Stem cell based therapies for spinal cord injury. Tissue and Cell 48, 328-333. DOI : 10.1016/j.tice.2016.05.008
- T. Setoguchi, K. Nakashima, T. Takizawa & T. Taga. (2004). Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Experimental Neurology 189, 33-44. DOI : 10.1016/j.expneurol.2003.12.007
- Y. Ohta, A. Hamaguchi, M. Ootaki, M. Watanabe & M. Takenaga. (2017). Intravenous infusion of adipose- derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy 19(7), 839-848. DOI : 10.1016/j.jcyt.2017.04.002
- T. Morita, M. Sasaki, Y. K. Sasaki, M. Nakazaki & O. Honmou. (2016). Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 335, 221-231. DOI : 10.1016/j.neuroscience.2016.08.037
- C. P. Hofstetter, E. J. Schwarz, D. Hess, D. J. Prockop & L. Olson. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceeding National Academics Science 99, 2199-2204. DOI : 10.1073/pnas.042678299
- M. Ohta, Y. Suzuki, T. Noda, K. Kataoka, S. Kuno & C. Ide. (2004). Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Experimental Neurology 187, 266-278. DOI : 10.1016/j.expneurol.2004.01.021
- Y. Jin, J. Bouyer, C. Haas & I. Fischer. (2014). Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat. Experimental Neurology 257, 57-69. DOI : 10.1016/j.expneurol.2014.04.016
- R. Lv, N. Mao, J. Wu, C. Lu & Z. Shi. (2015). Neuroprotective effect of allicin in a rat model of acute spinal cord injury. Life Science 143, 114-123. DOI : 10.1016/j.lfs.2015.11.001