References
- B. Wang, T.-M. Shih, B. Tian, C.-X. Wu and R.R.-G. Chang, "Mildly zigzag heat transfer affected by aspect ratios for recirculating flows in rectangular enclosures", Int. J. Heat Mass Trans. 107 (2017) 372. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.056
- Y.M. Seo, M.Y. Ha and Y.G. Park, "The effect of four elliptical cylinders with different aspect ratios on the natural convection inside a square enclosure", Int. J. Heat Mass Trans. 122 (2018) 491. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.016
- S. Yigit, R.J. Poole and N. Chakraborty, "Effects of aspect ratio on laminar Rayleigh-Benard convection of power-law fluids in rectangular enclosures: A numerical investigation", Int. J. Heat Mass Trans. 91 (2015) 1292. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.032
- M.N. Hasan, S. Saha and S.C. Saha, "Effects of corrugation frequency and aspect ratio on natural convection within an enclosure having sinusoidal corrugation over a heated top surface", Int. Commun. Heat Mass 39 (2012) 368. https://doi.org/10.1016/j.icheatmasstransfer.2012.01.003
- J.L. Lage, S.L.M. Junqueira, F.C. De Lai and A.T. Franco, "Aspect ratio effect on the prediction of boundary layer interference in steady natural convection inside heterogeneous enclosures", Int. J. Heat Mass Trans. 92 (2016) 940. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.062
- K. Kitamura, A. Mitsuishi, T. Suzuki and F. Kimura, "Fluid flow and heat transfer of natural convection adjacent to upward-facing, rectangular plates of arbitrary aspect ratios", Int. J. Heat Mass Trans. 89 (2015) 320. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.075
- K.L. Lee, M. Jafarian, F. Ghanadi, M. Arjomandi and G.J. Nathan, "An investigation into the effect of aspect ratio on the heat loss from a solar cavity receiver", Sol. Energy 149 (2017) 20. https://doi.org/10.1016/j.solener.2017.03.089
-
A.B. Solomona, J. van Rooyena, M. Renckena, M. Sharifpur and J.P. Meyer, "Experimental study on the influence of the aspect ratio of square cavity on natural convection heat transfer with
$Al_2O_3$ /water nanofluids", Int. Commun. Heat Mass 88 (2017) 254. https://doi.org/10.1016/j.icheatmasstransfer.2017.09.007 -
R. Choudhary and S. Subudhi, "Aspect ratio dependence of turbulent natural convection in
$Al_2O_3$ /water nanofluids", Appl. Therm. Eng. 108 (2016) 1095. https://doi.org/10.1016/j.applthermaleng.2016.08.016 - H. Karatas and T. Derbentli, "Natural convection and radiation in rectangular cavities with one active vertical wall", Int. J. Therm. Sci. 123 (2018) 129. https://doi.org/10.1016/j.ijthermalsci.2017.09.006
- H.T. Cheong, Z. Siri and S. Sivasankaran, "Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition", Int. Commun. Heat Mass 45 (2013) 75. https://doi.org/10.1016/j.icheatmasstransfer.2013.04.017
- M. Bouhalleb and H. Abbassi, "Natural convection of nanofluids in enclosures with low aspect ratios", Int. J. Hydrogen Energ. 39 (2014) 15275. https://doi.org/10.1016/j.ijhydene.2014.04.069
- G. Tanda, "Experiments on natural convection in watercooled ribbed channels with different aspect ratios", Int. J. Heat Mass Trans. 110 (2017) 606. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.050
- S. Yigit and N. Chakraborty, "Influences of aspect ratio on natural convection of power-law fluids in cylindrical annular space with differentially heated vertical walls", Thermal Science and Engineering Progress 2 (2017) 151. https://doi.org/10.1016/j.tsep.2017.05.008
- S. Morslia, A. Sabeura and M.E. Ganaoui, "Influence of aspect ratio on the natural convection and entropy assessing the feasibility of using the heat demand-outdoor", Enrgy. Proced. 139 (2017) 29. https://doi.org/10.1016/j.egypro.2017.11.168
- S. Yigit and N. Chakraborty, "Influences of aspect ratio on natural convection of power-law fluids in cylindrical annular space with differentially heated vertical walls", Thermal Science and Engineering Progress 2 (2017) 151. https://doi.org/10.1016/j.tsep.2017.05.008
- G. Tanda, "Experiments on natural convection in watercooled ribbed channels with different aspect ratios", Int. J. Heat Mass Trans. 110 (2017) 606. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.050
- Y.-R. Li, H. Zhang, L. Zhang and C.-M. Wu, "Threedimensional numerical simulation of double-diffusive Rayleigh-Benard convection in a cylindrical enclosure of aspect ratio 2", Int. J. Heat Mass Trans. 98 (2016) 472. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.026
- C.-Y. Wena, R.T. Tsai and K.-P. Leong, "Natural convection of magnetic fluid in a rectangular Hele-Shaw cell of different aspect ratios", Physics. Proc. 9 (2010) 181. https://doi.org/10.1016/j.phpro.2010.11.041
- V. Kurian, M.N. Varma and A. Kannan, "Numerical studies on laminar natural convection inside inclined cylinders of unity aspect ratio", Int. J. Heat Mass Trans. 52 (2009) 822. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.041
- W.M.B. Duval, "Convective effects during the physical vapor transport process-- I: thermal convection", J. Mater. Processing Manu. Sci. 1 (1992) 83.
- W.M.B. Duval, "Convective effects during the physical vapor transport process-- II: thermosolutal convection", J. Mater. Processing Manu. Sci. 1 (1993) 295.
- W.M.B. Duval, "Transition to chaos in the physical vapor transport process - I, proceeding of the ASMEWAM winter Annual Meeting, Symposium in fluid mechanics phenomena in microgravity, ASME-WAM, New Orleans, Louisiana, Nov. 28-Dec. 3 (1993).
- W.M.B. Duval, N.B. Singh and M.E. Glicksman, "Physical vapor transport of mercurous chloride crystals: design of a microgravity experiment", J. Cryst. Growth 174 (1997) 120. https://doi.org/10.1016/S0022-0248(96)01088-3
- F. Rosenberger and G. Muller, "Interfacial transport in crystal growth, a parameter comparison of convective effects", J. Cryst. Growth 65 (1983) 91. https://doi.org/10.1016/0022-0248(83)90043-X
- S.V. Patankar, "Numerical heat transfer and fluid flow" (Hemisphere Publishing Corp., Washington D.C., 1980).
- B.L. Markham, D.W. Greenwell and F. Rosenberger, "Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules", J. Cryst. Growth 51 (1981) 426. https://doi.org/10.1016/0022-0248(81)90419-X
- G.T. Kim, "Experimental and numerical studies on thermal convection during physical vapor transport of mercurous chloride", Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York (1993).