DOI QR코드

DOI QR Code

Towards the Application of Human Defensins as Antivirals

  • Park, Mee Sook (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University) ;
  • Kim, Jin Il (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University) ;
  • Lee, Ilseob (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University) ;
  • Park, Sehee (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University) ;
  • Bae, Joon-Yong (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University) ;
  • Park, Man-Seong (Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University)
  • Received : 2017.08.30
  • Accepted : 2017.10.12
  • Published : 2018.05.01

Abstract

Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express ${\alpha}$- and ${\beta}$-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the 'defensin vaccine' concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.

Keywords

References

  1. Albanesi, C., Fairchild, H. R., Madonna, S., Scarponi, C., De Pita, O., Leung, D. Y. and Howell, M. D. (2007) IL-4 and IL-13 negatively regulate TNF-alpha- and IFN-gamma-induced beta-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J. Immunol. 179, 984-992. https://doi.org/10.4049/jimmunol.179.2.984
  2. Alen, M. M., Dallmeier, K., Balzarini, J., Neyts, J. and Schols, D. (2012) Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Res. 96, 280-287. https://doi.org/10.1016/j.antiviral.2012.10.007
  3. Antcheva, N., Morgera, F., Creatti, L., Vaccari, L., Pag, U., Pacor, S., Shai, Y., Sahl, H. G. and Tossi, A. (2009) Artificial beta-defensin based on a minimal defensin template. Biochem. J. 421, 435-447. https://doi.org/10.1042/BJ20082242
  4. Bastian, A. and Schafer, H. (2001) Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul. Pept. 101, 157-161. https://doi.org/10.1016/S0167-0115(01)00282-8
  5. Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A. K., Farber, J. M., Segal, D. M., Oppenheim, J. J. and Kwak, L. W. (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298, 1025-1029. https://doi.org/10.1126/science.1075565
  6. Boman, H. G. (2003) Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254, 197-215. https://doi.org/10.1046/j.1365-2796.2003.01228.x
  7. Brandt, C. R., Akkarawongsa, R., Altmann, S., Jose, G., Kolb, A. W., Waring, A. J. and Lehrer, R. I. (2007) Evaluation of a theta-defensin in a Murine model of herpes simplex virus type 1 keratitis. Invest. Ophthalmol. Vis. Sci. 48, 5118-5124. https://doi.org/10.1167/iovs.07-0302
  8. Brass, A. L., Huang, I. C., Benita, Y., John, S. P., Krishnan, M. N., Feeley, E. M., Ryan, B. J., Weyer, J. L., van der Weyden, L., Fikrig, E., Adams, D. J., Xavier, R. J., Farzan, M. and Elledge, S. J. (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243-1254. https://doi.org/10.1016/j.cell.2009.12.017
  9. Bustos-Arriaga, J., Garcia-Machorro, J., Leon-Juarez, M., Garcia- Cordero, J., Santos-Argumedo, L., Flores-Romo, L., Mendez-Cruz, A. R., Juarez-Delgado, F. J. and Cedillo-Barron, L. (2011) Activation of the innate immune response against DENV in normal nontransformed human fibroblasts. PLoS Negl. Trop. Dis. 5, e1420. https://doi.org/10.1371/journal.pntd.0001420
  10. Carrat, F. and Flahault, A. (2007) Influenza vaccine: the challenge of antigenic drift. Vaccine 25, 6852-6862. https://doi.org/10.1016/j.vaccine.2007.07.027
  11. Castaneda-Sanchez, J. I., Dominguez-Martinez, D. A., Olivar-Espinosa, N., Garcia-Perez, B. E., Lorono-Pino, M. A., Luna-Herrera, J. and Salazar, M. I. (2016) Expression of antimicrobial peptides in human monocytic cells and neutrophils in response to dengue virus type 2. Intervirology 59, 8-19. https://doi.org/10.1159/000446282
  12. Chang, T. L., Francois, F., Mosoian, A. and Klotman, M. E. (2003) CAFBiomol mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alpha-defensin-1 HIV inhibition. J. Virol. 77, 6777-6784. https://doi.org/10.1128/JVI.77.12.6777-6784.2003
  13. Chang, T. L., Vargas, J., Jr., DelPortillo, A. and Klotman, M. E. (2005) Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest. 115, 765-773. https://doi.org/10.1172/JCI21948
  14. Collins, P. L. and Melero, J. A. (2011) Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res. 162, 80-99. https://doi.org/10.1016/j.virusres.2011.09.020
  15. Crack, L. R., Jones, L., Malavige, G. N., Patel, V. and Ogg, G. S. (2012) Human antimicrobial peptides LL-37 and human beta-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin. Exp. Dermatol. 37, 534-543. https://doi.org/10.1111/j.1365-2230.2012.04305.x
  16. Crane, M. J., Hokeness-Antonelli, K. L. and Salazar-Mather, T. P. (2009) Regulation of inflammatory monocyte/macrophage recruitment from the bone marrow during murine cytomegalovirus infection: role for type I interferons in localized induction of CCR2 ligands. J. Immunol. 183, 2810-2817. https://doi.org/10.4049/jimmunol.0900205
  17. Daher, K. A., Selsted, M. E. and Lehrer, R. I. (1986) Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068- 1074.
  18. de Leeuw, E., Burks, S. R., Li, X., Kao, J. P. and Lu, W. (2007) Structure- dependent functional properties of human defensin 5. FEBS Lett. 581, 515-520. https://doi.org/10.1016/j.febslet.2006.12.036
  19. De Paula, V. S., Pomin, V. H. and Valente, A. P. (2014) Unique properties of human ${\beta}$-defensin 6 (hBD6) and glycosaminoglycan complex: sandwich-like dimerization and competition with the chemokine receptor 2 (CCR2) binding site. J. Biol. Chem. 289, 22969-22979. https://doi.org/10.1074/jbc.M114.572529
  20. Demirkhanyan, L., Marin, M., Lu, W. and Melikyan, G. B. (2013) Subinhibitory concentrations of human ${\alpha}$-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathog. 9, e1003431. https://doi.org/10.1371/journal.ppat.1003431
  21. Demirkhanyan, L. H., Marin, M., Padilla-Parra, S., Zhan, C., Miyauchi, K., Jean-Baptiste, M., Novitskiy, G., Lu, W. and Melikyan, G. B. (2012) Multifaceted mechanisms of HIV-1 entry inhibition by human ${\alpha}$-defensin. J. Biol. Chem. 287, 28821-28838. https://doi.org/10.1074/jbc.M112.375949
  22. Diamond, M. S. and Harris, E. (2001) Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289, 297-311. https://doi.org/10.1006/viro.2001.1114
  23. Doss, M., White, M. R., Tecle, T., Gantz, D., Crouch, E. C., Jung, G., Ruchala, P., Waring, A. J., Lehrer, R. I. and Hartshorn, K. L. (2009) Interactions of alpha-, beta-, and theta-defensins with influenza A virus and surfactant protein D. J. Immunol. 182, 7878-7887. https://doi.org/10.4049/jimmunol.0804049
  24. Dowd, K. A., DeMaso, C. R. and Pierson, T. C. (2015) Genotypic differences in dengue virus neutralization are explained by a single amino acid mutation that modulates virus breathing. MBio 6, e01559-15.
  25. Dowd, K. A., Jost, C. A., Durbin, A. P., Whitehead, S. S. and Pierson, T. C. (2011) A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog. 7, e1002111. https://doi.org/10.1371/journal.ppat.1002111
  26. Dowd, K. A., Mukherjee, S., Kuhn, R. J. and Pierson, T. C. (2014) Combined effects of the structural heterogeneity and dynamics of flaviviruses on antibody recognition. J. Virol. 88, 11726-11737. https://doi.org/10.1128/JVI.01140-14
  27. Dugan, A. S., Maginnis, M. S., Jordan, J. A., Gasparovic, M. L., Manley, K., Page, R., Williams, G., Porter, E., O'Hara, B. A. and Atwood, W. J. (2008) Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J. Biol. Chem. 283, 31125-31132. https://doi.org/10.1074/jbc.M805902200
  28. Edfeldt, K., Liu, P. T., Chun, R., Fabri, M., Schenk, M., Wheelwright, M., Keegan, C., Krutzik, S. R., Adams, J. S., Hewison, M. and Modlin, R. L. (2010) T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc. Natl. Acad. Sci. U.S.A. 107, 22593-22598. https://doi.org/10.1073/pnas.1011624108
  29. Eisenhauer, P. B. and Lehrer, R. I. (1992) Mouse neutrophils lack defensins. Infect. Immun. 60, 3446-3447.
  30. Erwin, D. H. and Davidson, E. H. (2002) The last common bilaterian ancestor. Development 129, 3021-3032.
  31. Ferguson, N. M., Rodriguez-Barraquer, I., Dorigatti, I., Mier, Y. T.-R. L., Laydon, D. J. and Cummings, D. A. (2016) Benefits and risks of the Sanofi-Pasteur dengue vaccine: modeling optimal deployment. Science 353, 1033-1036. https://doi.org/10.1126/science.aaf9590
  32. Flatt, J. W., Kim, R., Smith, J. G., Nemerow, G. R. and Stewart, P. L. (2013) An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS ONE 8, e61571. https://doi.org/10.1371/journal.pone.0061571
  33. Fox, J. L. (2013) Antimicrobial peptides stage a comeback. Nat. Biotechnol. 31, 379-382. https://doi.org/10.1038/nbt.2572
  34. Furci, L., Tolazzi, M., Sironi, F., Vassena, L. and Lusso, P. (2012) Inhibition of HIV-1 infection by human ${\alpha}$-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS ONE 7, e45208. https://doi.org/10.1371/journal.pone.0045208
  35. Ganz, T. (2003) Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710-720. https://doi.org/10.1038/nri1180
  36. Ganz, T., Selsted, M. E., Szklarek, D., Harwig, S. S., Daher, K., Bainton, D. F. and Lehrer, R. I. (1985) Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76, 1427-1435. https://doi.org/10.1172/JCI112120
  37. Gao, X. F., Yang, Z. W. and Li, J. (2011) Adjunctive therapy with interferon- gamma for the treatment of pulmonary tuberculosis: a systematic review. Int. J. Infect. Dis. 15, e594-e600. https://doi.org/10.1016/j.ijid.2011.05.002
  38. Garcia, A. E., Osapay, G., Tran, P. A., Yuan, J. and Selsted, M. E. (2008) Isolation, synthesis, and antimicrobial activities of naturally occurring theta-defensin isoforms from baboon leukocytes. Infect. Immun. 76, 5883-5891. https://doi.org/10.1128/IAI.01100-08
  39. Garcia, J. R., Krause, A., Schulz, S., Rodriguez-Jimenez, F. J., Kluver, E., Adermann, K., Forssmann, U., Frimpong-Boateng, A., Bals, R. and Forssmann, W. G. (2001) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819-1821. https://doi.org/10.1096/fj.00-0865fje
  40. Gerlier, D. and Lyles, D. S. (2011) Interplay between innate immunity and negative-strand RNA viruses: towards a rational model. Microbiol. Mol. Biol. Rev. 75, 468-490 (second page of table of contents). https://doi.org/10.1128/MMBR.00007-11
  41. Gonzalez, S. F., Lukacs-Kornek, V., Kuligowski, M. P., Pitcher, L. A., Degn, S. E., Kim, Y. A., Cloninger, M. J., Martinez-Pomares, L., Gordon, S., Turley, S. J. and Carroll, M. C. (2010) Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11, 427- 434.
  42. Gounder, A. P., Myers, N. D., Treuting, P. M., Bromme, B. A., Wilson, S. S., Wiens, M. E., Lu, W., Ouellette, A. J., Spindler, K. R., Parks, W. C. and Smith, J. G. (2016) Defensins potentiate a neutralizing antibody response to enteric viral infection. PLoS Pathog. 12, e1005474. https://doi.org/10.1371/journal.ppat.1005474
  43. Gounder, A. P., Wiens, M. E., Wilson, S. S., Lu, W. and Smith, J. G. (2012) Critical determinants of human ${\alpha}$-defensin 5 activity against non-enveloped viruses. J. Biol. Chem. 287, 24554-24562. https://doi.org/10.1074/jbc.M112.354068
  44. Gropp, R., Frye, M., Wagner, T. O. and Bargon, J. (1999) Epithelial defensins impair adenoviral infection: implication for adenovirusmediated gene therapy. Hum. Gene Ther. 10, 957-964. https://doi.org/10.1089/10430349950018355
  45. Haasbach, E., Droebner, K., Vogel, A. B. and Planz, O. (2011) Lowdose interferon Type I treatment is effective against H5N1 and swine-origin H1N1 influenza A viruses in vitro and in vivo. J. Interferon Cytokine Res. 31, 515-525. https://doi.org/10.1089/jir.2010.0071
  46. Hancock, R. E. and Diamond, G. (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402-410. https://doi.org/10.1016/S0966-842X(00)01823-0
  47. Hartshorn, K. L., White, M. R., Tecle, T., Holmskov, U. and Crouch, E. C. (2006) Innate defense against influenza A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J. Immunol. 176, 6962-6972. https://doi.org/10.4049/jimmunol.176.11.6962
  48. Hazrati, E., Galen, B., Lu, W., Wang, W., Ouyang, Y., Keller, M. J., Lehrer, R. I. and Herold, B. C. (2006) Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J. Immunol. 177, 8658-8666. https://doi.org/10.4049/jimmunol.177.12.8658
  49. Heapy, A. M., Williams, G. M., Fraser, J. D. and Brimble, M. A. (2012) Synthesis of a dicarba analogue of human beta-defensin-1 using a combined ring closing metathesis--native chemical ligation strategy. Org. Lett. 14, 878-881. https://doi.org/10.1021/ol203407z
  50. Herrera, R., Morris, M., Rosbe, K., Feng, Z., Weinberg, A. and Tugizov, S. (2016) Human beta-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology 487, 172-187. https://doi.org/10.1016/j.virol.2015.09.025
  51. Hill, D. A., Baron, S. and Chanock, R. M. (1969) The effect of an interferon inducer on influenza virus. Bull. World Health Organ. 41, 689-693.
  52. Hokeness, K. L., Kuziel, W. A., Biron, C. A. and Salazar-Mather, T. P. (2005) Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-alpha/beta-induced inflammatory responses and antiviral defense in liver. J. Immunol. 174, 1549-1556. https://doi.org/10.4049/jimmunol.174.3.1549
  53. Hoover, D. M., Chertov, O. and Lubkowski, J. (2001) The structure of human beta-defensin-1: new insights into structural properties of beta-defensins. J. Biol. Chem. 276, 39021-39026. https://doi.org/10.1074/jbc.M103830200
  54. Hoover, D. M., Wu, Z., Tucker, K., Lu, W. and Lubkowski, J. (2003) Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob. Agents Chemother. 47, 2804-2809. https://doi.org/10.1128/AAC.47.9.2804-2809.2003
  55. Jang, Y. H. and Seong, B. L. (2014) Options and obstacles for designing a universal influenza vaccine. Viruses 6, 3159-3180. https://doi.org/10.3390/v6083159
  56. Jarczak, J., Kosciuczuk, E. M., Lisowski, P., Strzalkowska, N., Jozwik, A., Horbanczuk, J., Krzyzewski, J., Zwierzchowski, L. and Bagnicka, E. (2013) Defensins: natural component of human innate immunity. Hum. Immunol. 74, 1069-1079. https://doi.org/10.1016/j.humimm.2013.05.008
  57. Jiang, D., Weidner, J. M., Qing, M., Pan, X. B., Guo, H., Xu, C., Zhang, X., Birk, A., Chang, J., Shi, P. Y., Block, T. M. and Guo, J. T. (2010) Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. J. Virol. 84, 8332-8341. https://doi.org/10.1128/JVI.02199-09
  58. Jiang, Y., Yang, D., Li, W., Wang, B., Jiang, Z. and Li, M. (2012) Antiviral activity of recombinant mouse ${\beta}$-defensin 3 against influenza A virus in vitro and in vivo. Antivir. Chem. Chemother. 22, 255-262. https://doi.org/10.3851/IMP2077
  59. Ju, S. M., Goh, A. R., Kwon, D. J., Youn, G. S., Kwon, H. J., Bae, Y. S., Choi, S. Y. and Park, J. (2012) Extracellular HIV-1 Tat induces human beta-defensin-2 production via NF-kappaB/AP-1 dependent pathways in human B cells. Mol. Cells 33, 335-341. https://doi.org/10.1007/s10059-012-2287-0
  60. Kawai, T. and Akira, S. (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650. https://doi.org/10.1016/j.immuni.2011.05.006
  61. Kernbauer, E., Ding, Y. and Cadwell, K. (2014) An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94-98.
  62. Kim, J. I., Lee, I., Park, S., Hwang, M. W., Bae, J. Y., Lee, S., Heo, J., Park, M. S., Garcia-Sastre, A. and Park, M. S. (2013) Genetic requirement for hemagglutinin glycosylation and its implications for influenza A H1N1 virus evolution. J. Virol. 87, 7539-7549. https://doi.org/10.1128/JVI.00373-13
  63. Klotman, M. E. and Chang, T. L. (2006) Defensins in innate antiviral immunity. Nat. Rev. Immunol. 6, 447-456. https://doi.org/10.1038/nri1860
  64. Kluver, E., Schulz, A., Forssmann, W. G. and Adermann, K. (2002) Chemical synthesis of beta-defensins and LEAP-1/hepcidin. J. Pept. Res. 59, 241-248. https://doi.org/10.1034/j.1399-3011.2002.00980.x
  65. Kluver, E., Schulz-Maronde, S., Scheid, S., Meyer, B., Forssmann, W. G. and Adermann, K. (2005) Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 44, 9804-9816. https://doi.org/10.1021/bi050272k
  66. Kota, S., Sabbah, A., Chang, T. H., Harnack, R., Xiang, Y., Meng, X. and Bose, S. (2008) Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem. 283, 22417-22429. https://doi.org/10.1074/jbc.M710415200
  67. Krammer, F. and Palese, P. (2013) Influenza virus hemagglutinin stalkbased antibodies and vaccines. Curr. Opin. Virol. 3, 521-530. https://doi.org/10.1016/j.coviro.2013.07.007
  68. Krammer, F., Palese, P. and Steel, J. (2015) Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Curr. Top. Microbiol. Immunol. 386, 301-321.
  69. Kurane, I. and Ennis, F. A. (1988) Production of interferon alpha by dengue virus-infected human monocytes. J. Gen. Virol. 69, 445- 449. https://doi.org/10.1099/0022-1317-69-2-445
  70. Kurosawa, S., Ohta, M., Hayakawa, M., Kamino, Y., Abiko, Y. and Sasahara, H. (2002) Characterization of rat monoclonal antibodies against human beta-defensin-2. Hybrid. Hybridomics 21, 359-363. https://doi.org/10.1089/153685902761022706
  71. Lehrer, R. I. (2004) Primate defensins. Nat. Rev. Microbiol. 2, 727-738. https://doi.org/10.1038/nrmicro976
  72. Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S., Ganz, T. and Selsted, M. E. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84, 553-561. https://doi.org/10.1172/JCI114198
  73. Lehrer, R. I., Jung, G., Ruchala, P., Andre, S., Gabius, H. J. and Lu, W. (2009) Multivalent binding of carbohydrates by the human alphadefensin, HD5. J. Immunol. 183, 480-490. https://doi.org/10.4049/jimmunol.0900244
  74. Lehrer, R. I. and Lu, W. (2012) ${\alpha}$-Defensins in human innate immunity. Immunol. Rev. 245, 84-112. https://doi.org/10.1111/j.1600-065X.2011.01082.x
  75. Leikina, E., Delanoe-Ayari, H., Melikov, K., Cho, M. S., Chen, A., Waring, A. J., Wang, W., Xie, Y., Loo, J. A., Lehrer, R. I. and Chernomordik, L. V. (2005) Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nat. Immunol. 6, 995-1001. https://doi.org/10.1038/ni1248
  76. LeMessurier, K. S., Lin, Y., McCullers, J. A. and Samarasinghe, A. E. (2016) Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice. Antiviral. Res. 133, 208-217. https://doi.org/10.1016/j.antiviral.2016.08.013
  77. Li, W., Feng, Y., Kuang, Y., Zeng, W., Yang, Y., Li, H., Jiang, Z. and Li, M. (2014) Construction of eukaryotic expression vector with mBD1- mBD3 fusion genes and exploring its activity against influenza A virus. Viruses 6, 1237-1252. https://doi.org/10.3390/v6031237
  78. Liang, Z., Wu, S., Li, Y., He, L., Wu, M., Jiang, L., Feng, L., Zhang, P. and Huang, X. (2011) Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-${\beta}$ in cultured hepatoma cells. PLoS ONE 6, e23346. https://doi.org/10.1371/journal.pone.0023346
  79. Machado, L. R. and Ottolini, B. (2015) An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front. Immunol. 6, 115.
  80. Mackewicz, C. E., Yuan, J., Tran, P., Diaz, L., Mack, E., Selsted, M. E. and Levy, J. A. (2003) Alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17, F23-F32. https://doi.org/10.1097/00002030-200309260-00001
  81. Mahanonda, R., Sa-Ard-Iam, N., Rerkyen, P., Thitithanyanont, A., Subbalekha, K. and Pichyangkul, S. (2012) MxA expression induced by ${\alpha}$-defensin in healthy human periodontal tissue. Eur. J. Immunol. 42, 946-956. https://doi.org/10.1002/eji.201141657
  82. Mandal, M. and Nagaraj, R. (2002) Antibacterial activities and conformations of synthetic alpha-defensin HNP-1 and analogs with one, two and three disulfide bridges. J. Pept. Res. 59, 95-104. https://doi.org/10.1034/j.1399-3011.2002.01945.x
  83. Mangoni, M. L., McDermott, A. M. and Zasloff, M. (2016) Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp. Dermatol. 25, 167-173. https://doi.org/10.1111/exd.12929
  84. Megjugorac, N. J., Young, H. A., Amrute, S. B., Olshalsky, S. L. and Fitzgerald-Bocarsly, P. (2004) Virally stimulated plasmacytoid dendritic cells produce chemokines and induce migration of T and NK cells. J. Leukoc. Biol. 75, 504-514. https://doi.org/10.1189/jlb.0603291
  85. Menendez, A. and Brett Finlay, B. (2007) Defensins in the immunology of bacterial infections. Curr. Opin. Immunol. 19, 385-391. https://doi.org/10.1016/j.coi.2007.06.008
  86. Mohan, T., Mitra, D. and Rao, D. N. (2014) Nasal delivery of PLG microparticle encapsulated defensin peptides adjuvanted gp41 antigen confers strong and long-lasting immunoprotective response against HIV-1. Immunol. Res. 58, 139-153. https://doi.org/10.1007/s12026-013-8428-5
  87. Moon, S. K. and Lim, D. J. (2015) Intratympanic gene delivery of antimicrobial molecules in otitis media. Curr. Allergy Asthma Rep. 15, 14. https://doi.org/10.1007/s11882-015-0517-1
  88. Morgan, A. J. and Parker, S. (2007) Translational mini-review series on vaccines: the Edward Jenner Museum and the history of vaccination. Clin. Exp. Immunol. 147, 389-394. https://doi.org/10.1111/j.1365-2249.2006.03304.x
  89. Mousa, J. J., Kose, N., Matta, P., Gilchuk, P. and Crowe, J. E., Jr. (2017) A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein. Nat. Microbiol. 2, 16271. https://doi.org/10.1038/nmicrobiol.2016.271
  90. Neumann, G. and Kawaoka, Y. (2011) The first influenza pandemic of the new millennium. Influenza Other Respir. Viruses 5, 157-166. https://doi.org/10.1111/j.1750-2659.2011.00231.x
  91. Nguyen, E. K., Nemerow, G. R. and Smith, J. G. (2010) Direct evidence from single-cell analysis that human ${\alpha}$-defensins block adenovirus uncoating to neutralize infection. J. Virol. 84, 4041-4049. https://doi.org/10.1128/JVI.02471-09
  92. Nikfar, S., Rahimi, R. and Abdollahi, M. (2010) A meta-analysis of the efficacy and tolerability of interferon-${\beta}$ in multiple sclerosis, overall and by drug and disease type. Clin. Ther. 32, 1871-1888. https://doi.org/10.1016/j.clinthera.2010.10.006
  93. Nishimura, M., Abiko, Y., Kurashige, Y., Takeshima, M., Yamazaki, M., Kusano, K., Saitoh, M., Nakashima, K., Inoue, T. and Kaku, T. (2004) Effect of defensin peptides on eukaryotic cells: primary epithelial cells, fibroblasts and squamous cell carcinoma cell lines. J. Dermatol. Sci. 36, 87-95. https://doi.org/10.1016/j.jdermsci.2004.07.001
  94. Openshaw, P. J. (2002) Potential therapeutic implications of new insights into respiratory syncytial virus disease. Respir Res. 3, S15- S20. https://doi.org/10.1186/rr172
  95. Openshaw, P. J. and Tregoning, J. S. (2005) Immune responses and disease enhancement during respiratory syncytial virus infection. Clin. Microbiol. Rev. 18, 541-555. https://doi.org/10.1128/CMR.18.3.541-555.2005
  96. Park, M. S., Kim, J. I., Park, S., Lee, I. and Park, M. S. (2016) Original Antigenic Sin Response to RNA Viruses and Antiviral Immunity. Immune Netw. 16, 261-270. https://doi.org/10.4110/in.2016.16.5.261
  97. Park, S., Kim, J. I., Lee, I., Bae, J. Y., Hwang, M. W., Kim, D., Jang, S. I., Kim, H., Park, M. S., Kwon, H. J., Song, J. W., Cho, Y. S., Chun, W. and Park, M. S. (2014) Inhibition of Pseudomonas aeruginosa with a recombinant RNA-based viral vector expressing human ${\beta}$-defensin 4. BMC Microbiol. 14, 237. https://doi.org/10.1186/s12866-014-0237-z
  98. Perron, G. G., Zasloff, M. and Bell, G. (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc. Biol. Sci. 273, 251- 256. https://doi.org/10.1098/rspb.2005.3301
  99. Perry, C. M. and Wilde, M. I. (1998) Interferon-alpha-2a: a review of its use in chronic hepatitis C. BioDrugs 10, 65-89. https://doi.org/10.2165/00063030-199810010-00005
  100. Phoenix, D. A., Dennison, S. R. and Harris, F. (2013) Antimicrobial peptides: their history, evolution, and functional promiscuity. In Antimicrobial Peptides, pp. 1-38. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  101. Pica, N. and Palese, P. (2013) Toward a universal influenza virus vaccine: prospects and challenges. Annu. Rev. Med. 64, 189-202. https://doi.org/10.1146/annurev-med-120611-145115
  102. Pollara, J., Easterhoff, D. and Fouda, G. G. (2017) Lessons learned from human HIV vaccine trials. Curr. Opin. HIV AIDS 12, 216-221. https://doi.org/10.1097/COH.0000000000000362
  103. Pone, E. J., Xu, Z., White, C. A., Zan, H. and Casali, P. (2012) B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front. Biosci. (Landmark Ed.) 17, 2594-2615. https://doi.org/10.2741/4073
  104. Proud, D., Sanders, S. P. and Wiehler, S. (2004) Human rhinovirus infection induces airway epithelial cell production of human betadefensin 2 both in vitro and in vivo. J. Immunol. 172, 4637-4645. https://doi.org/10.4049/jimmunol.172.7.4637
  105. Quinones-Mateu, M. E., Lederman, M. M., Feng, Z., Chakraborty, B., Weber, J., Rangel, H. R., Marotta, M. L., Mirza, M., Jiang, B., Kiser, P., Medvik, K., Sieg, S. F. and Weinberg, A. (2003) Human epithelial ${\beta}$-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17, F39-F48. https://doi.org/10.1097/00002030-200311070-00001
  106. Raj, P. A., Antonyraj, K. J. and Karunakaran, T. (2000) Large-scale synthesis and functional elements for the antimicrobial activity of defensins. Biochem. J. 347 Pt 3, 633-641. https://doi.org/10.1042/bj3470633
  107. Rapista, A., Ding, J., Benito, B., Lo, Y. T., Neiditch, M. B., Lu, W. and Chang, T. L. (2011) Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology 8, 45. https://doi.org/10.1186/1742-4690-8-45
  108. Roberts, J. N., Graham, B. S., Karron, R. A., Munoz, F. M., Falsey, A. R., Anderson, L. J., Marshall, V., Kim, S. and Beeler, J. A. (2016) Challenges and opportunities in RSV vaccine development: Meeting report from FDA/NIH workshop. Vaccine 34, 4843-4849. https://doi.org/10.1016/j.vaccine.2016.07.057
  109. Rohrl, J., Yang, D., Oppenheim, J. J. and Hehlgans, T. (2010a) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J. Immunol. 184, 6688-6694. https://doi.org/10.4049/jimmunol.0903984
  110. Rohrl, J., Yang, D., Oppenheim, J. J. and Hehlgans, T. (2010b) Specific binding and chemotactic activity of mBD4 and its functional orthologue hBD2 to CCR6-expressing cells. J. Biol. Chem. 285, 7028-7034. https://doi.org/10.1074/jbc.M109.091090
  111. Rothman, A. L. (2011) Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11, 532-543. https://doi.org/10.1038/nri3014
  112. Ryan, L. K., Dai, J., Yin, Z., Megjugorac, N., Uhlhorn, V., Yim, S., Schwartz, K. D., Abrahams, J. M., Diamond, G. and Fitzgerald-Bocarsly, P. (2011) Modulation of human beta-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J. Leukoc. Biol. 90, 343-356. https://doi.org/10.1189/jlb.0209079
  113. Ryan, L. K., Diamond, G., Amrute, S., Feng, Z., Weinberg, A. and Fitzgerald-Bocarsly, P. (2003) Detection of HBD1 peptide in peripheral blood mononuclear cell subpopulations by intracellular flow cytometry. Peptides 24, 1785-1794. https://doi.org/10.1016/j.peptides.2003.09.021
  114. Saitoh, T., Komano, J., Saitoh, Y., Misawa, T., Takahama, M., Kozaki, T., Uehata, T., Iwasaki, H., Omori, H., Yamaoka, S., Yamamoto, N. and Akira, S. (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12, 109-116. https://doi.org/10.1016/j.chom.2012.05.015
  115. Salvatore, M., Garcia-Sastre, A., Ruchala, P., Lehrer, R. I., Chang, T. and Klotman, M. E. (2007) alpha-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J. Infect. Dis. 196, 835- 843. https://doi.org/10.1086/521027
  116. Savelkoul, H. F., Ferro, V. A., Strioga, M. M. and Schijns, V. E. (2015) Choice and design of adjuvants for parenteral and mucosal vaccines. Vaccines (Basel) 3, 148-171. https://doi.org/10.3390/vaccines3010148
  117. Schutte, B. C., Mitros, J. P., Bartlett, J. A., Walters, J. D., Jia, H. P., Welsh, M. J., Casavant, T. L. and McCray, P. B., Jr. (2002) Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc. Natl. Acad. Sci. U.S.A. 99, 2129-2133. https://doi.org/10.1073/pnas.042692699
  118. Scott, L. J. (2016) Tetravalent dengue vaccine: a review in the prevention of dengue disease. Drugs 76, 1301-1312. https://doi.org/10.1007/s40265-016-0626-8
  119. Semple, F., MacPherson, H., Webb, S., Kilanowski, F., Lettice, L., Mc- Glasson, S. L., Wheeler, A. P., Chen, V., Millhauser, G. L., Melrose, L., Davidson, D. J. and Dorin, J. R. (2015) Human ${\beta}$-defensin 3 [corrected] exacerbates MDA5 but suppresses TLR3 responses to the viral molecular pattern mimic polyinosinic:polycytidylic acid. PLoS Genet. 11, e1005673. https://doi.org/10.1371/journal.pgen.1005673
  120. Seo, E. S., Blaum, B. S., Vargues, T., De Cecco, M., Deakin, J. A., Lyon, M., Barran, P. E., Campopiano, D. J. and Uhrin, D. (2010) Interaction of human ${\beta}$-defensin 2 (HBD2) with glycosaminoglycans. Biochemistry 49, 10486-10495. https://doi.org/10.1021/bi1011749
  121. Sharadadevi, A. and Nagaraj, R. (2010) A molecular dynamics study of human defensins HBD-1 and HNP-3 in water. J. Biomol. Struct. Dyn. 27, 541-550. https://doi.org/10.1080/07391102.2010.10507337
  122. Sittisombut, N., Maneekarn, N., Kanjanahaluethai, A., Kasinrerk, W., Viputtikul, K. and Supawadee, J. (1995) Lack of augmenting effect of interferon-gamma on dengue virus multiplication in human peripheral blood monocytes. J. Med. Virol. 45, 43-49. https://doi.org/10.1002/jmv.1890450109
  123. Smith, J. G. and Nemerow, G. R. (2008) Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 3, 11- 19. https://doi.org/10.1016/j.chom.2007.12.001
  124. Smith, J. G., Silvestry, M., Lindert, S., Lu, W., Nemerow, G. R. and Stewart, P. L. (2010) Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog. 6, e1000959. https://doi.org/10.1371/journal.ppat.1000959
  125. Suarez-Carmona, M., Hubert, P., Delvenne, P. and Herfs, M. (2015) Defensins: "Simple" antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev. 26, 361-370. https://doi.org/10.1016/j.cytogfr.2014.12.005
  126. Sun, L., Finnegan, C. M., Kish-Catalone, T., Blumenthal, R., Garzino- Demo, P., La Terra Maggiore, G. M., Berrone, S., Kleinman, C., Wu, Z., Abdelwahab, S., Lu, W. and Garzino-Demo, A. (2005) Human beta-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J. Virol. 79, 14318-14329. https://doi.org/10.1128/JVI.79.22.14318-14329.2005
  127. Surasombatpattana, P., Hamel, R., Patramool, S., Luplertlop, N., Thomas, F., Despres, P., Briant, L., Yssel, H. and Misse, D. (2011) Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses. Infect. Genet. Evol. 11, 1664-1673. https://doi.org/10.1016/j.meegid.2011.06.009
  128. Swanson, C. L., Wilson, T. J., Strauch, P., Colonna, M., Pelanda, R. and Torres, R. M. (2010) Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J. Exp. Med. 207, 1485-1500. https://doi.org/10.1084/jem.20092695
  129. Szyk, A., Wu, Z., Tucker, K., Yang, D., Lu, W. and Lubkowski, J. (2006) Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Protein Sci. 15, 2749-2760. https://doi.org/10.1110/ps.062336606
  130. Tate, M. D., Job, E. R., Deng, Y. M., Gunalan, V., Maurer-Stroh, S. and Reading, P. C. (2014) Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6, 1294-1316. https://doi.org/10.3390/v6031294
  131. Tecle, T., White, M. R., Gantz, D., Crouch, E. C. and Hartshorn, K. L. (2007) Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J. Immunol. 178, 8046-8052. https://doi.org/10.4049/jimmunol.178.12.8046
  132. Tenge, V. R., Gounder, A. P., Wiens, M. E., Lu, W. and Smith, J. G. (2014) Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition. PLoS Pathog. 10, e1004360. https://doi.org/10.1371/journal.ppat.1004360
  133. Tewary, P., de la Rosa, G., Sharma, N., Rodriguez, L. G., Tarasov, S. G., Howard, O. M., Shirota, H., Steinhagen, F., Klinman, D. M., Yang, D. and Oppenheim, J. J. (2013) ${\beta}$-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-${\alpha}$ production by human plasmacytoid dendritic cells, and promote inflammation. J. Immunol. 191, 865-874. https://doi.org/10.4049/jimmunol.1201648
  134. Uyangaa, E., Kim, J. H., Patil, A. M., Choi, J. Y., Kim, S. B. and Eo, S. K. (2015) Distinct upstream role of type I IFN signaling in hematopoietic stem cell-derived and epithelial resident cells for concerted Recruitment of Ly-6Chi monocytes and NK cells via CCL2-CCL3 cascade. PLoS Pathog. 11, e1005256. https://doi.org/10.1371/journal.ppat.1005256
  135. Vanheule, V., Vervaeke, P., Mortier, A., Noppen, S., Gouwy, M., Snoeck, R., Andrei, G., Van Damme, J., Liekens, S. and Proost, P. (2016) Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochem. Pharmacol. 100, 73-85. https://doi.org/10.1016/j.bcp.2015.11.001
  136. Vannice, K. S., Roehrig, J. T. and Hombach, J. (2015) Next generation dengue vaccines: a review of the preclinical development pipeline. Vaccine 33, 7091-7099. https://doi.org/10.1016/j.vaccine.2015.09.053
  137. Vemula, S. V., Amen, O., Katz, J. M., Donis, R., Sambhara, S. and Mittal, S. K. (2013a) Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time. Virus Res. 178, 398-403. https://doi.org/10.1016/j.virusres.2013.09.013
  138. Vemula, S. V., Pandey, A., Singh, N., Katz, J. M., Donis, R., Sambhara, S. and Mittal, S. K. (2013b) Adenoviral vector expressing murine ${\beta}$-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice. Virus Res. 177, 55- 61. https://doi.org/10.1016/j.virusres.2013.07.008
  139. Vernieri, E., Valle, J., Andreu, D. and de la Torre, B. G. (2014) An optimized Fmoc synthesis of human defensin 5. Amino Acids 46, 395- 400. https://doi.org/10.1007/s00726-013-1629-3
  140. Vos, Q., Lees, A., Wu, Z. Q., Snapper, C. M. and Mond, J. J. (2000) Bcell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev. 176, 154-170. https://doi.org/10.1034/j.1600-065X.2000.00607.x
  141. Wang, A., Chen, F., Wang, Y., Shen, M., Xu, Y., Hu, J., Wang, S., Geng, F., Wang, C., Ran, X., Su, Y., Cheng, T. and Wang, J. (2013) Enhancement of antiviral activity of human alpha-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. J. Virol. 87, 2835-2845. https://doi.org/10.1128/JVI.02209-12
  142. Watanabe, T., Watanabe, S., Maher, E. A., Neumann, G. and Kawaoka, Y. (2014) Pandemic potential of avian influenza A (H7N9) viruses. Trends Microbiol. 22, 623-631. https://doi.org/10.1016/j.tim.2014.08.008
  143. Watford, W. T., Moriguchi, M., Morinobu, A. and O'Shea, J. J. (2003) The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 14, 361-368. https://doi.org/10.1016/S1359-6101(03)00043-1
  144. Weinberg, A., Quinones-Mateu, M. E. and Lederman, M. M. (2006) Role of human beta-defensins in HIV infection. Adv. Dent. Res. 19, 42-48. https://doi.org/10.1177/154407370601900109
  145. Wencker, M. and Brantly, M. L. (2005) Cytotoxic concentrations of alpha-defensins in the lungs of individuals with alpha 1-antitrypsin deficiency and moderate to severe lung disease. Cytokine 32, 1-6. https://doi.org/10.1016/j.cyto.2005.06.003
  146. White, M. R., Tecle, T., Crouch, E. C. and Hartshorn, K. L. (2007) Impact of neutrophils on antiviral activity of human bronchoalveolar lavage fluid. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L1293- L1299. https://doi.org/10.1152/ajplung.00266.2007
  147. Wie, S. H., Du, P., Luong, T. Q., Rought, S. E., Beliakova-Bethell, N., Lozach, J., Corbeil, J., Kornbluth, R. S., Richman, D. D. and Woelk, C. H. (2013) HIV downregulates interferon-stimulated genes in primary macrophages. J. Interferon Cytokine Res. 33, 90-95. https://doi.org/10.1089/jir.2012.0052
  148. Wiehler, S. and Proud, D. (2007) Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L505-L515. https://doi.org/10.1152/ajplung.00066.2007
  149. Wiens, M. E. and Smith, J. G., (2015) Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J. Virol. 89, 2866-2874. https://doi.org/10.1128/JVI.02901-14
  150. Wiens, M. E. and Smith, J. G., (2017) a-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome. mBio 8, e02304-16.
  151. Wiens, M. E., Wilson, S. S., Lucero, C. M. and Smith, J. G. (2014) Defensins and viral infection: dispelling common misconceptions. PLoS Pathog. 10, e1004186. https://doi.org/10.1371/journal.ppat.1004186
  152. Wilson, S. S., Wiens, M. E., Holly, M. K. and Smith, J. G. (2016) Defensins at the mucosal surface: latest insights into defensin-virus interactions. J. Virol. 90, 5216-5218. https://doi.org/10.1128/JVI.00904-15
  153. Wilson, S. S., Wiens, M. E. and Smith, J. G. (2013) Antiviral mechanisms of human defensins. J. Mol. Biol. 425, 4965-4980. https://doi.org/10.1016/j.jmb.2013.09.038
  154. Wohlford-Lenane, C. L., Meyerholz, D. K., Perlman, S., Zhou, H., Tran, D., Selsted, M. E. and McCray, P. B., Jr. (2009) Rhesus theta-defensin prevents death in a mouse model of severe acute respiratory syndrome coronavirus pulmonary disease. J. Virol. 83, 11385-11390. https://doi.org/10.1128/JVI.01363-09
  155. Woo, J. I., Kil, S. H., Brough, D. E., Lee, Y. J., Lim, D. J. and Moon, S. K. (2015) Therapeutic potential of adenovirus-mediated delivery of ${\beta}$-defensin 2 for experimental otitis media. Innate Immun. 21, 215-224. https://doi.org/10.1177/1753425914534002
  156. Wu, Z., Cocchi, F., Gentles, D., Ericksen, B., Lubkowski, J., Devico, A., Lehrer, R. I. and Lu, W. (2005) Human neutrophil alpha-defensin 4 inhibits HIV-1 infection in vitro. FEBS Lett. 579, 162-166. https://doi.org/10.1016/j.febslet.2004.11.062
  157. Wu, Z., Ericksen, B., Tucker, K., Lubkowski, J. and Lu, W. (2004) Synthesis and characterization of human alpha-defensins 4-6. J. Pept. Res. 64, 118-125. https://doi.org/10.1111/j.1399-3011.2004.00179.x
  158. Wu, Z., Hoover, D. M., Yang, D., Boulegue, C., Santamaria, F., Oppenheim, J. J., Lubkowski, J. and Lu, W. (2003a) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc. Natl. Acad. Sci. U.S.A. 100, 8880-8885. https://doi.org/10.1073/pnas.1533186100
  159. Wu, Z., Li, X., Ericksen, B., de Leeuw, E., Zou, G., Zeng, P., Xie, C., Li, C., Lubkowski, J., Lu, W. Y. and Lu W. (2007) Impact of pro segments on the folding and function of human neutrophil alphadefensins. J. Mol. Biol. 368, 537-549. https://doi.org/10.1016/j.jmb.2007.02.040
  160. Wu, Z., Prahl, A., Powell, R., Ericksen, B., Lubkowski, J. and Lu, W. (2003b) From pro defensins to defensins: synthesis and characterization of human neutrophil pro alpha-defensin-1 and its mature domain. J. Pept. Res. 62, 53-62. https://doi.org/10.1034/j.1399-3011.2003.00068.x
  161. Wykes, M., Pombo, A., Jenkins, C. and MacPherson, G. G. (1998) Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 161, 1313-1319.
  162. Xu, Z., Peng, L., Zhong, Z., Fang, X. and Cen, P. (2006a) High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol. Prog. 22, 382-386. https://doi.org/10.1021/bp0502680
  163. Xu, Z., Zhong, Z., Huang, L., Peng, L., Wang, F. and Cen, P. (2006b) High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Appl. Microbiol. Biotechnol. 72, 471-479. https://doi.org/10.1007/s00253-005-0287-0
  164. Yang, D., Biragyn, A., Kwak, L. W. and Oppenheim, J. J. (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291-296. https://doi.org/10.1016/S1471-4906(02)02246-9
  165. Yang, D., Chertov, O., Bykovskaia, S. N., Chen, Q., Buffo, M. J., Shogan, J., Anderson, M., Schroder, J. M., Wang, J. M., Howard, O. M. and Oppenheim, J. J. (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525-528. https://doi.org/10.1126/science.286.5439.525
  166. Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A. J., Herold, B. C., Wagar, E. A. and Lehrer R. I. (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78, 5147-5156. https://doi.org/10.1128/JVI.78.10.5147-5156.2004
  167. Yeung, A. T., Gellatly, S. L. and Hancock, R. E. (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci. 68, 2161-2176. https://doi.org/10.1007/s00018-011-0710-x
  168. Yin, L., Chino, T., Horst, O. V., Hacker, B. M., Clark, E. A., Dale, B. A. and Chung, W. O. (2010) Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria. BMC Immunol. 11, 37. https://doi.org/10.1186/1471-2172-11-37
  169. Zhu, S. and Gao, B. (2013) Evolutionary origin of ${\beta}$-defensins. Dev. Comp. Immunol. 39, 79-84. https://doi.org/10.1016/j.dci.2012.02.011
  170. Zhu, W., Li, J. and Liang, G. (2011) How does cellular heparan sulfate function in viral pathogenicity? Biomed. Environ. Sci. 24, 81-87.

Cited by

  1. Antimicrobial Peptides pp.1557-8674, 2018, https://doi.org/10.1089/sur.2018.194
  2. Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents vol.33, pp.1, 2018, https://doi.org/10.1080/13102818.2019.1611385
  3. DNA Gene Expression to Study Immunologic Mechanisms for the Long-Term Cure of Malaria in Babies and Children in South-Western Nigeria vol.9, pp.2, 2018, https://doi.org/10.4236/abc.2019.92006
  4. Human Antimicrobial Peptides as Therapeutics for Viral Infections vol.11, pp.8, 2018, https://doi.org/10.3390/v11080704
  5. New methods of prevention and treatment of acute respiratory viral infections in children. Local protection factors of the respiratory mucosa vol.64, pp.5, 2019, https://doi.org/10.21508/1027-4065-2019-64-5-14-20
  6. Antiviral Activities of Human Host Defense Peptides vol.27, pp.9, 2020, https://doi.org/10.2174/0929867326666190805151654
  7. Designing Multi-Epitope Vaccines to Combat Emerging Coronavirus Disease 2019 (COVID-19) by Employing Immuno-Informatics Approach vol.11, pp.None, 2018, https://doi.org/10.3389/fimmu.2020.01663
  8. Linear and dendrimeric antiviral peptides: design, chemical synthesis and activity against human respiratory syncytial virus vol.8, pp.13, 2020, https://doi.org/10.1039/c9tb02485a
  9. Immunoinformatic design of a COVID-19 subunit vaccine using entire structural immunogenic epitopes of SARS-CoV-2 vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-77547-4
  10. In silico analysis of non-synonymous single nucleotide polymorphisms of human DEFB1 gene vol.21, pp.1, 2020, https://doi.org/10.1186/s43042-020-00110-3
  11. Therapeutic approaches on the interaction between SARS-CoV2 and ACE2: a biochemical perspective vol.45, pp.6, 2018, https://doi.org/10.1515/tjb-2020-0180
  12. The seven constitutive respiratory defense barriers against SARS-CoV-2 infection vol.54, pp.None, 2018, https://doi.org/10.1590/0037-8682-0461-2021
  13. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections vol.13, pp.1, 2021, https://doi.org/10.3390/pharmaceutics13010101
  14. Compelling Evidence for the Activity of Antiviral Peptides against SARS-CoV-2 vol.13, pp.5, 2018, https://doi.org/10.3390/v13050912
  15. Compilation of antiviral treatments and strategies to fight fish viruses vol.13, pp.3, 2021, https://doi.org/10.1111/raq.12521
  16. Molecular Identification and Antibacterial Activity Analysis of Blue Fox (Vulpes lagopus) β-Defensins 108 and 122 vol.11, pp.7, 2018, https://doi.org/10.3390/ani11071857
  17. Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19 vol.9, pp.7, 2018, https://doi.org/10.3390/microorganisms9071415
  18. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions vol.50, pp.13, 2018, https://doi.org/10.1039/d0cs00729c
  19. Leveraging publicly available coronavirus data to identify new therapeutic targets for COVID-19 vol.16, pp.9, 2018, https://doi.org/10.1371/journal.pone.0257965
  20. Human beta-defensins 2 and 4 are dysregulated in patients with coronavirus disease 19 vol.160, pp.None, 2021, https://doi.org/10.1016/j.micpath.2021.105205
  21. Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response vol.10, pp.11, 2018, https://doi.org/10.3390/cells10112991
  22. Defensins: The natural peptide antibiotic vol.179, pp.None, 2018, https://doi.org/10.1016/j.addr.2021.114008