DOI QR코드

DOI QR Code

Biodegradation of toluene vapor by evaporative cooler model based biofilter

  • Vikrant, Kumar (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University) ;
  • Nagar, Harshil (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University) ;
  • Anand, Raja (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University) ;
  • Sharma, Anjney (ICAR-National Bureau of Agriculturally Important Microorganisms) ;
  • Lee, Sang-Hun (Departments of Environmental Science, Keimyung University) ;
  • Giri, Balendu Shekher (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University) ;
  • Kim, Ki-Hyun (Departments of Civil & Environmental Engineering, Hanyang University) ;
  • Singh, Ram Sharan (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University)
  • Received : 2017.12.03
  • Accepted : 2018.04.07
  • Published : 2018.04.25

Abstract

The biodegradation of toluene vapor was investigated using a new type of biofilter equipped with a laboratory-scale evaporative cooler model packed with wood wool fibers (area: $360cm^2$). For the purpose of this study, the biofilter system was inoculated with Pseudomonas sp. RSST (MG 279053). The performance of this biofilter, assessed in terms of toluene removal efficiency (and elimination capacity), was as high as 99 % at a loading rate of $6g/h{\cdot}m^2$. The toluene removal efficiency decreased in an exponential manner with the increase in the loading rate. The cooler model-based biofilter was able to remove more than 99 % of toluene using Pseudomonas sp. RSST (MG 279053) as an effective inoculum. This biofilter is designed to operate under batch conditions for the removal of toluene in confined environments (e.g., automotive plants, boiler rooms in manufacturing facilities, and offshore drilling platforms).

Keywords

References

  1. R. M. Dixit, S. C. Deshmukh, A. A. Gadhe, G. S. Kannade, S. K. Lokhande, R. A. Pandey, A. N. Vaidya, S. N. Mudliar, and M. A. Deshusses, Environ. Technol., 33, 751-760 (2012). https://doi.org/10.1080/09593330.2011.592226
  2. M. Murata, M. Tsujikawa, and S. Kawanishi, Biochem. Biophys. Res. Commun., 261, 478-483 (1999). https://doi.org/10.1006/bbrc.1999.1041
  3. S. Mudliar, B. Giri, K. Padoley, D. Satpute, R. Dixit, P. Bhatt, R. Pandey, A. Juwarkar, and A. Vaidya, J. Environ. Manage., 91, 1039-1054 (2010). https://doi.org/10.1016/j.jenvman.2010.01.006
  4. B. S. Giri, K. H. Kim, R. A. Pandey, J. Cho, H. Song, and Y. S. Kim, Process Biochem., 49, 1543-1554 (2014). https://doi.org/10.1016/j.procbio.2014.05.024
  5. B. S. Giri, and R. A. Pandey, Bioresour. Technol., 142, 420-427 (2013). https://doi.org/10.1016/j.biortech.2013.04.100
  6. G. Leson, and A. M. Winer, J. Air. Waste. Manage. Assoc., 41, 1045-1054 (1991). https://doi.org/10.1080/10473289.1991.10466898
  7. R. S. Singh, B. N. Rai, and S. N. Upadhyay, Process Saf. Environ. Prot., 88, 366-371 (2010). https://doi.org/10.1016/j.psep.2010.06.001
  8. R. S. Singh, B. N. Rai, and S. N. Upadhyay, Environ. Technol., 27, 349-357 (2006). https://doi.org/10.1080/09593332708618649
  9. S. J. Ergas, K. Kinney, M. E. Fuller, and K. M. Scow, Biotechnol. Bioeng, 44, 1048-1054 (1994). https://doi.org/10.1002/bit.260440905
  10. A. Mallakin, and O. P. Ward, J. Ind. Microbiol., 16, 309-318 (1996). https://doi.org/10.1007/BF01570040
  11. A. K. Shukla, R. S. Singh, S. N. Upadhyay, and S. K. Dubey, Bioresour. Technol., 101, 8119-8126 (2010). https://doi.org/10.1016/j.biortech.2010.06.040
  12. J. Huang, and K. L. Pinder, Biotechnol. Bioeng., 45, 212-218 (1995). https://doi.org/10.1002/bit.260450305
  13. C. Alonso, M. T. Suidan, G. A. Sorial, F. L. Smith, P. Biswas, P. J. Smith, and R. C. Brenner, Biotechnol. Bioeng., 54, 583-594 (1997). https://doi.org/10.1002/(SICI)1097-0290(19970620)54:6<583::AID-BIT9>3.0.CO;2-F
  14. B. S. Giri, S. N. Mudliar, S. C. Deshmukh, S. Banerjee, and R. A. Pandey, Bioresour. Technol., 101, 2185-2190 (2010). https://doi.org/10.1016/j.biortech.2009.11.033
  15. A. Sharma, P. Singh, S. Kumar, P. L. Kashyap, A. K. Srivastava, H. Chakdar, R. N. Singh, R. Kaushik, A. K. Saxena, and A.K. Sharma, Geomicrobiol. J., 32, 170-180 (2015). https://doi.org/10.1080/01490451.2014.938205
  16. K. Tamura, J. Dudley, M. Nei, and S. Kumar, Mol. Biol. Evol., 24, 1596-1599 (2007). https://doi.org/10.1093/molbev/msm092
  17. C. Lu, M. R. Lin, and C. Chu, J. Environ. Eng., 125, 775-779 (1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(775)
  18. D. W. Park, S. S. Kim, S. Haam, I. S. Ahn, E. B. Kim, and W. S. Kim, Environ. Technol., 23, 309-318 (2002). https://doi.org/10.1080/09593332508618411
  19. G. Gallastegui, A. Avalos Ramirez, A. Elias, J. P. Jones, and M. Heitz, Bioresour. Technol., 102, 7657-7665 (2011). https://doi.org/10.1016/j.biortech.2011.05.054
  20. G. Gallastegui, A. Barona, N. Rojo, L. Gurtubay, and A. Elías, Process Saf. Environ. Prot., 91, 112-122 (2013). https://doi.org/10.1016/j.psep.2011.11.006
  21. Y. Zhu, S. Li, Y. Luo, H. Ma, and Y. Wang, PeerJ, 4, e2045 (2016). https://doi.org/10.7717/peerj.2045
  22. T. M. Chong, W. F. Yin, J. W. Chen, S. Mondy, C. Grandclement, D. Faure, Y. Dessaux, and K. G. Chan, AMB Express, 6, 95 (2016). https://doi.org/10.1186/s13568-016-0269-x