DOI QR코드

DOI QR Code

기후환경 변화에 따른 전기재해 위험도 분석

Analysis and Risk Prediction of Electrical Accidents Due to Climate Change

  • 김완석 (원광대학교 전기공학과) ;
  • 김영훈 (원광대학교 전기공학과) ;
  • 김재혁 (원광대학교 전기공학과) ;
  • 오훈 (원광대학교 전기공학과)
  • Kim, Wan-Seok (Department of Electrical Engineering, Wonkwang University) ;
  • Kim, Young-Hun (Department of Electrical Engineering, Wonkwang University) ;
  • Kim, Jaehyuck (Department of Electrical Engineering, Wonkwang University) ;
  • Oh, Hun (Department of Electrical Engineering, Wonkwang University)
  • 투고 : 2018.01.22
  • 심사 : 2018.04.06
  • 발행 : 2018.04.30

초록

본 산업의 발달 및 화석연료 사용 증가로 인하여 지구온난화 및 기후변화가 가속화되어 기존보다 강도 높은 자연재해가 빈번하게 발생하고 있다. 전기시설물은 옥외에 시설된 경우가 많아 자연재해에 큰 영향을 받아 전기설비 관련 사고가 증가하는 추세이다. 본 논문에서는 국내의 기후변화에 따른 전기화재, 감전사고 및 전기설비사고의 통계 현황을 분석하여 기후변화와 연계한 위험도를 제시한다. 또한, 다양한 지역 별(광역시) 기후조건(온도, 습도)과 연계한 전기재해 데이터 분석을 통하여 각 지역의 월별 전기화재 위험도 분석 모델을 제시하고, 저압, 고압 설비의 자연재해에 대한 사고 위험도를 분석한다. 이러한 지역별, 설비별 위험도 분석 모델을 통하여 기초적인 전기재해 예측 모델을 제시하였다. 따라서 제시한 분석 데이터를 활용하여 향후 각 지역 및 전기설비를 대상으로 전기재해 위험도 예측 맵을 웹사이트나 스마트폰 앱을 통하여 전기안전 서비스를 제안할 수 있으며, 기후변화의 따른 자연재해에 대한 전기사고를 미연에 방지하기 위한 내성기준이나 전기설비의 내구성을 증가시키기 위한 노력이 필요하다.

The development of industry and the increase in the use of fossil fuels have accelerated the process of global warming and climate change, resulting in more frequent and intense natural disasters than ever before. Since electricity facilities are often installed outdoors, they are heavily influenced by natural disasters and the number of related accidents is increasing. In this paper, we analyzed the statistical status of domestic electrical fires, electric shock accidents, and electrical equipment accidents and hence analyzed the risk associated with climate change. Through the analysis of the electrical accidental data in connection with the various regional (metropolitan) climatic conditions (temperature, humidity), the risk rating and charts for each region and each equipment were produced. Based on this analysis, a basic electric risk prediction model is presented and a method of displaying an electric hazard prediction map for each region and each type of electric facilities through a website or smart phone app was developed using the proposed analysis data. In addition, efforts should be made to increase the durability of the electrical equipment and improve the resistance standards to prevent future disasters.

키워드

참고문헌

  1. Sangjin Jeong, Yoon-Young An, "Climate Change Risk Assessment Method for Electrical Facility," Proc. of Information and Communication Technology Convergence(ICTC), pp. 184-188, October, 2016.
  2. ITU, "Resilient pathways: the adaptation of the ICT sector to climate change," pp. 13-19, April, 2014.
  3. David Yates, Byron Quan Luna, "Stormy Weather: Assessing Climate Change Hazards to Electric Power Infrastructure: A Sandy Case Study," IEEE Power and Energy Magazine, pp. 66-75, August 2014. DOI: https://doi.org/10.1109/MPE.2014.2331901
  4. DeTao Mao, Jose R. Marti, K. D. Srivastava, "Mitigating Blackout along the Cascading Pathways," IEEE Conferences, pp. 159-164, May 2009.
  5. P. Hoeppe, G. Berz, "Risk of climate change - the perspective of the (re) insurance industry," IEEE Power Engineering Society General Meeting 2005, pp. 1367-1370, August 2005. DOI: https://doi.org/10.1109/PES.2005.1489359
  6. Judith Cardell, "The Electric Power Industry and Climate Change: U.S. Research Needs," 2008 IEEE Power and Energy Society General Meeting, pp. 1-3, August 2008. DOI: https://doi.org/10.1109/PES.2008.4596411
  7. Ching-Lai Hor, "Analyzing the Impact of Weather Variables on Monthly Electricity Demand," IEEE Transactions on power system, pp. 2078-2085, November 2005. DOI: https://doi.org/10.1109/TPWRS.2005.857397
  8. Tom Overbye, Judith Cardell, "The Electric Power Industry and Climate Change: Power Systems Research Possibilities," PSERC Publication, June 2007.
  9. Korea Electrical Safety Corporation, "Statistical analysis of electric disaster," 2006-2016.
  10. Northern Powergrid, Adapting to Climate Change, Executive Summary, pp. 3-12, June 2015.