DOI QR코드

DOI QR Code

Increase of Antioxidant Activities of Egg White Protein Hydrolysate by Fractionation without Using Toxic Chemicals

  • Park, Eun Young (Dept. of Food and Nutrition, Korea Christian University) ;
  • Sato, Kenji (Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University)
  • Received : 2018.01.09
  • Accepted : 2018.02.23
  • Published : 2018.02.28

Abstract

The objectives of the present study were to examine the antioxidant activity of autofocusing fractions from egg white protein hydrolysates and obtain higher antioxidant peptide fraction, which could be applied to the food model system. Alkaline protease hydrolysate of egg white protein exerted higher antioxidant activities than other protein hydrolysates and were fractionated on the basis of the amphoteric nature of sample peptides by preparative isoelectric focusing without toxic solvents and reagents, which is termed autofocusing. Neutral and basic fractions showed higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than the acidic fractions. The acidic and neutral fractions showed higher hydroxyl (OH) radical scavenging activity and oxygen radical absorbance capacity (ORAC) values than the basic fractions. The acidic fractions showed higher metal chelating activity than basic fractions. Antioxidant activities of some autofocusing fractions except for ORAC showed higher compared to the crude hydrolysate. These results suggest that peptides fractions from egg white protein are effective antioxidant, and that autofocusing could be useful to increase antioxidant activity for application to food system.

Keywords

References

  1. Bayram, T., Pekmez, M., Arda, N. A., & Yalcin, S. (2008). Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta, 75, 705-709. https://doi.org/10.1016/j.talanta.2007.12.007
  2. Bidingmeyer, B. A., Cohen, S. A., & Tarvin, T., L. (1984). Rapid analysis of amino acids using pre-column derivatization. Journal of Chromatography, 336, 93-104. https://doi.org/10.1016/S0378-4347(00)85133-6
  3. Davalos, A., Miguel, M., Bartolome, B., & Lopez-Fandino, R. (2004). Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection, 67, 1939-1944. https://doi.org/10.4315/0362-028X-67.9.1939
  4. Gulcin, I. (2006). Antioxidant and antiradical activities of Lcarnitine. Life Sciences, 78, 803-811. https://doi.org/10.1016/j.lfs.2005.05.103
  5. Hashimoto, K., Sato, K., Nakamura, Y., & Ohtsuki, K. (2006). Development of continuous type apparatus for ampholyte- free isoelectric focusing (autofocusing) of peptides in protein hydrolysates. Journal of Agricultural & Food Chemistry, 54, 650-655. https://doi.org/10.1021/jf0520286
  6. Huang, D., Ou, B., Hanpsch-Woodill, M., Flanagan, J., & Prior, R. L. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. Journal of Agricultural & Food Chemistry, 50, 4437-4444. https://doi.org/10.1021/jf0201529
  7. Ibrahim, H. R. (1997). Insight into the structure-function relationships of ovalbumin, ovotransferrin, and lysozyme. In: Yamamoto, T., Juneja, L. R., Hatta, H., Kim, M., editors. HenEggs: Their basic and applied science. New York: CRC press, Inc.
  8. Jeong, H. J., Park, J. H., Lam, Y., & de Lumen, B. O. (2003) Characterization of lunasin isolated from soybean. Journal of Agricultural & Food Chemistry, 51, 7901-7906. https://doi.org/10.1021/jf034460y
  9. Jung, K. M., Kim, S. H., Jeong, Y. J., & Choi, M. A. (2017). Quality caracteristics and antioxidant effect of sugar preserved wild peach (Prunus persica L.) juice by enzymatic treatment. Culinary Science & Hospitality Research, 23(5), 25-33. https://doi.org/10.20878/cshr.2017.23.5.003003003
  10. Kim, W. M., & Lee, Y. S. (2007). A study on antioxidant activity of bread with waxy black rice flour added. Culinary Science & Hospitality Research, 13(4) 178-185. https://doi.org/10.20878/cshr.2007.13.4.014014014
  11. Kingston, E. R., Monahan, F. J., Buckley, D. J., & Lynch, P. B. (1998). Lipid oxidation in cooked pork as affected by vitamin E, cooking and storage conditions. Journal of Food Science, 63(3), 386-389. https://doi.org/10.1111/j.1365-2621.1998.tb15748.x
  12. Kobayashi, Y., Rupa, P., Kovacs-Nolan, J., Turner, P., Matsui, T., & Mine, Y. (2015). Oral administration of hen egg white ovotransferrin attenuates the development of colitis induced by dextran sodium sulfate in mice. Journal of Agricultural & Food Chemistry, 63(5), 1532-1539. https://doi.org/10.1021/jf505248n
  13. Liu, Q., Kong, B., Xiong, Y. L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118, 403-410. https://doi.org/10.1016/j.foodchem.2009.05.013
  14. Memarpoor-Yazdia, M., Asoodehb, A., & Chamania, J. (2012). A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Functional Foods, 4, 278-286. https://doi.org/10.1016/j.jff.2011.12.004
  15. Miguel, M., & Aleixandre, A. (2006). Antihypertensive peptides derived from egg protein. The Journal of Nutrition, 136, 1457-1460. https://doi.org/10.1093/jn/136.6.1457
  16. Park, E. Y., Imazu, H., Matsumura, Y., Nakamura, Y., & Sato, K. (2012). Effects of peptide fractions with different isoelectric points from wheat gluten hydrolysates on lipid oxidation in pork meat patties. Journal of Agricultural & Food Chemistry, 60, 7483-7488. https://doi.org/10.1021/jf301532e
  17. Park, S. J., Kwon, W. T., & Rha, Y. A. (2014). Antioxidant activities of naturaceuticals extract in vitro. Culinary Science & Hospitality Research, 20(5), 29-33.
  18. Pena-Ramos, E. A., & Xiong, Y. L. (2003). Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Science, 64, 259-263. https://doi.org/10.1016/S0309-1740(02)00187-0
  19. Pena-Ramos, E. A., & Xiong, Y. L. (2002). Antioxidant activity of soy protein hydrolysates in a liposomal system. Journal of Food Science, 67, 2952-2956. https://doi.org/10.1111/j.1365-2621.2002.tb08844.x
  20. Ren, J. Y., Zhao, M. M., Shi, J., Wang, J. S., Jiang, Y. M., Cui, C., Kakuda, Y., & Xue, S. J. (2008). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 108(2), 727-736. https://doi.org/10.1016/j.foodchem.2007.11.010
  21. Rajapakse, N., Mendis, E., Jung, W., K., Je, J. Y., & Kim, S. K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38, 175-182. https://doi.org/10.1016/j.foodres.2004.10.002
  22. Salminen, H., Kivikari, R., & Heinonen, M. (2006). Inhibition of protein and lipid oxidation by rapeseed, camelina and soy meal in cooked pork meat patties. European Food Research and Technology, 223, 461-468. https://doi.org/10.1007/s00217-005-0225-5
  23. Sirtori, E., Isak, I., Resta, D., Boschin, G., & Arnoldi, A. (2012). Mechanical and thermal processing effects on protein integrity and peptide fingerprint of pea protein isolate. Food Chemistry, 134, 113-121. https://doi.org/10.1016/j.foodchem.2012.02.073
  24. Tsuge, N., Ekawa, Y., Nomura, Y., Yamamoto, M., & Sugisawa, S. (1991). Antioxidative activity of peptides prepared by enzymic hydrolysis of egg-white albumin. Journal of the Agricultural Chemical Society of Japan, 65, 1635-1641. https://doi.org/10.1271/nogeikagaku1924.65.1635
  25. Wang, L. S., Huang, J. C., Chen, Y. L., Huang, M., & Zhou, G. H. (2015) Identification and characterization of antioxidant peptides from enzymatic hydrolysates of duck meat. Journal of Agricultural & Food Chemistry, 63, 3437-3444. https://doi.org/10.1021/jf506120w
  26. Wang, L. L., & Xiong, Y. L. (2005). Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. Journal of Agricultural & Food Chemistry, 53, 9186-9192. https://doi.org/10.1021/jf051213g
  27. Wanita, A., & Lorenz, K. (1996). Antioxidant potential of 5-n pentadecylresorcinol. Journal of Food Processing & Preservation, 20, 417-429. https://doi.org/10.1111/j.1745-4549.1996.tb00757.x
  28. You, L. J., Zhao, M. M., Regenstein, J. M., & Ren, J. Y. (2010). Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization- mass spectrometry. Food Research International, 43, 1167-1173. https://doi.org/10.1016/j.foodres.2010.02.009
  29. Zang, Y., Duan, X., & Zhuang, Y. (2012). Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides, 38, 13-21. https://doi.org/10.1016/j.peptides.2012.08.014
  30. Zarei, M., Ebrahimpour, A., Abdul-Hamid, A., Anwar, F., Bakar, F. A., Philip, R., & Saari, N. (2014) Identification and characterization of papaingenerated antioxidant peptides from palm kernel cake proteins. Food Research International, 62, 726-734. https://doi.org/10.1016/j.foodres.2014.04.041
  31. Zhang, J. H., Zhang, H. Wang, L., Guo, X. N., Wang, X. G., & Yao, H. Y. (2010). Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDITOF/ TOF MS/MS. Food Chemistry, 119, 226-234. https://doi.org/10.1016/j.foodchem.2009.06.015
  32. Zhang, W. G., Xiao, S., Himali, S., Lee, E. J., & Ahn, D. U. (2010). Improving functional value of meat products. Meat Science, 86, 15-31. https://doi.org/10.1016/j.meatsci.2010.04.018